Band Tail States in FAPbI3: Characterization and Simulation
Adam Wright a, Rebecca Milot a, Giles Eperon a, Henry Snaith a, Michael Johnston a, Laura Herz a
a University of Oxford, Department of Physics, Clarendon Laboratory, UK, Parks Road, United Kingdom
NIPHO
Proceedings of International Conference on Perovskite Thin Film Photovoltaics, Photonics and Optoelectronics (ABXPV18PEROPTO)
Perovskite Photonics and Optoelectronics (PEROPTO18). 1st March
Rennes, France, 2018 February 27th - March 1st
Organizers: Jacky Even and Sam Stranks
Oral, Adam Wright, presentation 003
DOI: https://doi.org/10.29363/nanoge.abxpvperopto.2018.003
Publication date: 11th December 2017

The success of perovskite photovoltaics is underpinned by their favourable optoelectronic properties, notably their combination of high charge-carrier mobilities with low rates of charge-carrier recombination[1]. Sub-bandgap trap states in hybrid lead halide perovskites can act as nonradiative recombination centres, leading to shorter charge-carrier lifetimes and limiting the open-circuit voltage (Voc) in perovskite solar cells[2]. It is therefore essential to understand the nature and energy scale of these trap states for the development and optimization of technology based on these materials.

In this study[3] we investigated the influence of sub-bandgap trap states on charge-carrier recombination through an analysis of the low-temperature photoluminescence (PL)  of FAPbI3, a perovskite material used in some of the most efficient and stable perovskite solar cells [4]. We observed a power-law time dependence in the emission intensity and an additional low-energy emission peak that exhibits an anomalous relative Stokes shift. Using a rate-equation model and a Monte Carlo simulation, we revealed that both phenomena arise from an exponential trap-density tail with characteristic energy scale of ≈3 meV. Since charge-carrier recombination from sites deep within the tail causes emission with energy downshifted by up to several tens of meV, such phenomena may in part be responsible for Voc losses commonly observed in these materials. We propose that the origin of the band-tail states in FAPbI3 may lie in the rotational freedom of the polar organic cation. These results underline the suitability of viewing hybrid perovskites as classic semiconductors, whose electronic bandstructure picture is moderated by a modest degree of energetic disorder.

[1]         C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2014, 26, 1584.

[2]         A. Baumann, S. Väth, P. Rieder, M. C. Heiber, K. Tvingstedt, V. Dyakonov, J. Phys. Chem. Lett. 2015, 6, 2350.

[3]         A. D. Wright, R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, L. M. Herz, Adv. Funct. Mater. 2017, 27, 1700860.

[4]         W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. Il Seok, Science 2015, 348, 1234.

 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info