Printed Solar – Green Energy for Industrial, Warehouse and Commercial (IWC) Buildings
Paul Dastoor a
a Centre for Organic Electronics University of Newcastle, King St & Auckland St, Newcastle NSW 2300, Australia, Newcastle, Australia
nanoGe Fall Meeting
Proceedings of Materials for Sustainable Development Conference (MAT-SUS) (NFM22)
#AppTGT - Application Targets for Next Generation Photovoltaics
Barcelona, Spain, 2022 October 24th - 28th
Invited Speaker, Paul Dastoor, presentation 247
Publication date: 11th July 2022

Printed solar modules based on organic photovoltaic materials offer significant promise as a next-generation solar energy technology manufactured using roll-to-roll printing. A relatively mature technology, printed solar weighs less than 300 g per square metre, is less than 0.3 mm thick and can be adhered to roofing and other structures using adhesives. Moreover, detailed economic modelling has demonstrated that by focussing on low-cost materials and manufacturing techniques, printed solar is commercially compelling even at relatively low device efficiencies and lifetimes [1].

A key application target for printed solar is the Industrial, Warehouse and Commercial (IWC) building sector. The size of the sector is significant with the area of IWC roofing conservatively estimated to be more that 100 million square metres in Australia [2] and over 4 billion square metres worldwide [3]. Over 70 % of IWC roofs are manufactured to the minimum specification and these “slender” roofs are low weight bearing and incapable of supporting the weight of conventional silicon solar panels which typically weigh around 20 kg per square metre.

In this paper we outline our work in developing large area printed solar for IWC applications in Australia, encompassing material synthesis, device development, demonstration installation, economic modelling and recycling. With modelled payback times of less than 2 years for a typical IWC roof, printed solar offers significant potential for sustainable energy generation in the sector.

This work was performed in part at the Materials Node (Newcastle) of the Australian National Fabrication Facility (ANFF), which is a company established under the National Collaborative Research Infrastructure Strategy to provide nano- and microfabrication facilities for Australia’s researchers.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info