Accelerated Thermal Aging Effects on Carbon-Based Perovskite Solar Cells: A Joint Experimental and Theoretical Analysis
Giovanni Pica a, Matteo Degani a, Giorgio Schileo a, Alessandro Girella a, Chiara Milanese a, David Martineau b, Lucio Claudio Andreani c, Giulia Grancini a
a Department of Chemistry, University of Pavia, Italy
b Solaronix, Aubonne 1170, Switzerland
c Department of Physics, University of Pavia
NIPHO
Proceedings of International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics (NIPHO22)
Online, Spain, 2022 February 14th - 15th
Organizers: Giulia Grancini, Mónica Lira-Cantú and Silvia Colella
Contributed talk, Giovanni Pica, presentation 003
DOI: https://doi.org/10.29363/nanoge.nipho.2022.003
Publication date: 11th November 2021

In the search for stable perovskite photovoltaic technology, carbon-based perovskite solar cells (C-PSCs) represent a valid, stable solution for near-future commercialization. However, a complete understanding of the operational device stability calls for assessing the device robustness under thermal stress. Herein, the device response is monitored upon a prolonged thermal cycle aging (heating the device for 1 month up to 80 °C) on state-of-the-art C-PSCs, often neglected, mimicking outdoor conditions. Device characterization is combined with in-house-developed advanced modeling of the current–voltage characteristics of the C-PSCs using an iterative fitting method based on the single-diode equation to extrapolate series (RS) and shunt (RSH) resistances. Two temperature regimes are identified: Below 50 °C C-PSCs are stable, and switching to 80 °C a slow device degradation takes place. This is associated with a net decrease of the device RSH, whereas the RS is unaltered, pointing to interface deterioration. Indeed, structural and optical analyses, by means of X-ray diffraction and photoluminescence studies, reveal no degradation of the perovskite bulk, providing clear evidence that perovskite/contact interfaces are the bottlenecks for thermal-induced degradation in C-PSCs.

The authors acknowledge the “HY-NANO” project that has received funding from the European Research Council (ERC) Starting Grant 2018 under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 802862) and from the project FARE Ricerca in Italia FARE Ricerca in Italia EXPRESS (R18ENKMTA3).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info