Thin films and polymer composites using aereosol-generated nanoparticles
Giuseppe Portale a
a Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, Netherlands
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#ChemNano22. Chemistry of Nanomaterials
Online, Spain, 2022 March 7th - 11th
Organizers: Loredana Protesescu and Maksym Yarema
Invited Speaker, Giuseppe Portale, presentation 201
DOI: https://doi.org/10.29363/nanoge.nsm.2022.201
Publication date: 7th February 2022

Nanoparticle thin films and polymer/nanoparticle composites show a wide range of applications in catalysis, electrochemistry, optoelectronics, sensors and nanomedicine. In all these applications, detailed knowledge of the nanoparticle size and aggregation behavior is necessary to understand the properties of the produced systems.

Metallic and metal oxide nanoparticles can be produced chemically first and later deposited in thin films or included inside a polymeric matrix. Despite the chemical route allows great control of the nanoparticle shape and the size dispersity, the use of insulating ligands to passivate the nanoparticle surface and enhance nanoparticle stability and solubility is not advantageous for electronic applications. Alternatively, ligand-free nanoparticles can be produced by physical methods in the gas phase and be transported via aereosol to a substrate to form thin films or composites.

In this talk, the production of different metallic nanoparticles (Au, Pt and Sn) using spark ablation technique is discussed. Using X-ray scattering, information on the nanoparticle synthesis and their deposition in thin and ultra-thin films are obtained. Quantitative analysis is demonstarted, allowing the measurement of size polydispersity and the aggregation behavior when deposited on silicon substrated. The quantitative analysis can be conducted on well-defined nanoparticles (Pt and Au) as well as on reactive (Sn/SnOx) nanoparticles.

A recent example of the use of these aereosol-generated nanoparticles in conducting polymer nanocomposites is also illustrated. Low energy deposition methods was employed to gentle deposite nanoparticle on a thin films of a conducting, thermoelectric polymer such as PEDOT:PSS. Own to the naked nanoparticle nature and the interaction between the nanoparticle and the polymer, the thermoelectric properties of PEDOT:PSS can be drastically enhanced.[1]

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info