Understanding and controlling trapping processes in lead halide perovskite nanocrystals for efficient and ultra-stable radiation detectors
Sergio Brovelli a
a Dipartimento di Scienza dei Materiali Università degli studi di Milano-Bicocca Via Roberto Cozzi 55, IT-20125 Milano, Italy
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#PerNC22. Colloidal Metal Halide Perovskite Nanocrystals: From Synthesis to Applications
Online, Spain, 2022 March 7th - 11th
Organizers: Maksym Kovalenko, Maryna Bodnarchuk and Osman Bakr
Invited Speaker, Sergio Brovelli, presentation 254
DOI: https://doi.org/10.29363/nanoge.nsm.2022.254
Publication date: 7th February 2022

The urgency for affordable and reliable detectors for ionizing radiation in medical diagnostics, nuclear control and particle physics is generating growing demand for innovative scintillator devices combining efficient scintillation, fast emission lifetime, high interaction probability with ionizing radiation, as well as mitigated reabsorption to suppress losses in large volume/high-density detectors. Prized for their solution processability, strong light-matter interaction, large electron-hole diffusion length and tunable, intense luminescence at visible wavelengths, lead halide perovskite nanocrystals (LHP-NCs) are attracting growing attention as highly efficient emitters in artificial light sources and as high-Z materials for next generation scintillators and photoconductors for ionizing radiation detection. Nonetheless, several key aspects, such as the trapping and detrapping mechanisms to/from shallow and deep trap states involved in the scintillation process and the radiation hardness of LHP NCs under high doses of ionizing radiation are still not fully understood, leaving scientists without clear indications of the suitability of LHP-NCs in real world radiation detectors or design strategies for materials optimization. In this talk I will present on our recent strategies for high performance radiation detection schemes and will report recent spectroscopic results of the scintillation process and its competitive phenomena, ultimately offering a possible path to the realization of highly efficient and extremely radiation hard LHP-NCs.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info