Interfacial and compositional Engineering to Afford Efficient and Stable Perovskite Solar Cells and Modules
Mohammad Nazeeruddin a, Cheng Liu a, Yi Yang a, Bin Ding a, Yong Ding a
a Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL VALAIS, Sion, 1951, Switzerland.
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#PeroSolarFab22. Perovskite solar cells: on the way from the lab to fab
Online, Spain, 2022 March 7th - 11th
Organizers: Yulia Galagan, Eugene Katz and Pavel Troshin
Invited Speaker, Mohammad Nazeeruddin, presentation 274
DOI: https://doi.org/10.29363/nanoge.nsm.2022.274
Publication date: 7th February 2022

Deposition of two-dimensional perovskite layers between perovskite absorber and hole-transporting layer is considered to be an essential strategy to reduce defects in state-of-the-art perovskite solar cells (PSCs). This strategy, however, suffers from the inevitable formation of in-plane favoured two-dimensional (2D) perovskite layers with impaired charge transport, especially under thermal conditions, impeding photovoltaic performance and device scale-up. Therefore, to overcome this limitation, we designed and investigated various cations that form 2D perovskite layers on top of the 3-dimensional perovskite layer. The ensuing PSCs achieve an efficiency of over 24% with long-term operational stability (over 1000 hours). Notably, a record efficiency of 23% for the perovskite module with an active area of 26 cm2 was achieved using compositionally engineered perovskite. In this talk, we will present strategies to enhance PSC's power conversion efficiency and stability.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info