Understanding the chemistry of metal-semiconductor heterostructure pod formation by solution-liquid-solid growth
Nilotpal Kapuria a, Sumair Imtiaz a, Abinaya Sankaran a, Shalini Singh a, Kevin M Ryan a
a Bernal Institute, University of Limerick, V94 T9PX, Limerick, Ireland
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#ChemNano22. Chemistry of Nanomaterials
Online, Spain, 2022 March 7th - 11th
Organizers: Loredana Protesescu and Maksym Yarema
Contributed talk, Nilotpal Kapuria, presentation 328
DOI: https://doi.org/10.29363/nanoge.nsm.2022.328
Publication date: 7th February 2022

Colloidal heterostructure nanocrystals (NCs) exhibit enhanced physical and electronic properties due to the synergistic effect of chemically distinguished domains.[1], [2] Among them, multi-pods are more active in electrochemical processes than core-shell structures accredited to the more accessible core with adequate shielding from electrochemical reaction-related adverse structural deformations.3 However, the synthesis and development of colloidal multipods lack a direct growth approach. Here, we synthesize colloidal Bi-Cu2-xS multipods, and single pod NCs in a solution-liquid-solid (SLS) growth of Cu2-xS on insitu formed Bi NCs (Figure 1). We reveal that controlling the state (liquid or solid) of Bi seed and influx rate of Cu+ cations can alter the number of pods formation during hetero-nucleation of Bi seeded Cu2-xS heterostructures. The ex-situ mechanistic investigation of the growth process reveals that the equivalent amount of diphosphonic acid (DPA) stabilizes the Cu-thiolate complex, thus lowering the free Cu+ concentration and increasing the induction time. Therefore, Bi NCs transition into solid faceted NCs, forming a single Cu2-xS pod. In contrast, a low DPA (0 to 0.5 mmol) concentration cannot stabilize the Cu-thiolate complex, resulting in high free Cu+ concentration and multipods of Cu2-xS on Bi. Furthermore, we studied the electrochemical performance of Bi-Cu2-xS as anode material for potassium ion batteries.   

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info