Exciton polarons in Ruddlesden Popper metal halides
Carlos Silva a
a Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, 30332, United States
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#PhotoPero22. Photophysics of Halide Perovskites and Related Materials - from Bulk to Nano
Online, Spain, 2022 March 7th - 11th
Organizers: Sascha Feldmann, Annamaria Petrozza and Ajay Ram Srimath Kandada
Invited Speaker, Carlos Silva, presentation 356
DOI: https://doi.org/10.29363/nanoge.nsm.2022.356
Publication date: 7th February 2022

Two-dimensional Ruddlesden-Popper metal halides (2D-RPMHs) are materials composed of quasi-2D layers of metal-halide octahedra separated by long (~1nm) organic cationic layers. The latter facilitate electron and hole quantum confinement within the metal-halide layers resulting in a quantum-well like structure. Properties of excitons (i.e., the  electron-hole bound states) in such structures are characterized by strong binding energy (>200 meV) arising from the dynamically screened Coulomb interactions [1]. We have experimentally observed that polaronic effects arising from the lattice dressing of the carriers, are not only active but that they fundamentally define excitons in 2D-RPMHs [2]. We thus refer to such excitons as the exciton-polarons, with properties that are measurably distinct than those of free excitons in semiconductors [1]. In this talk, I will discuss the quantum dynamics of exciton-polarons and provide spectroscopic insights into the peculiar phonon-phonon [3], exciton-phonon and exciton-exciton [4] interactions. I will present our perspective on how the coherent optical response of 2D perovskites can be effectively rationalized within the “exciton-polaron” framework, in which lattice dressing of photo-carriers constitute an integral component of excitonic wavefunction [1], with consequences on exciton recombination dynamics and diffusion.

References

[1] A. R. Srimath Kandada and C. Silva, J. Phys. Chem. Lett., 11, 3173-3184 (2020).

[2] F. Thouin, D. Valverde-Chavez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva and A. R. Srimath Kandada, Nature Materials, 18, 349-356 (2019).

[3] E. Rojas-Gatjens, C. Silva-Acuna and A. R. Srimath Kandada, Peculiar anharmonicity of Ruddlesden Popper metal halides: Temperature dependent dephasing, Materials Horizons (2022).

[4] A. R. Srimath Kandada, H. Li, F. Thouin, E. R. Bittner and C. Silva, Stochastic scattering theory for excitation-induced dephasing: Time dependent nonlinear coherent exciton lineshapes, J. Chem. Phys., 153, 164706 (2020).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info