Band-Edge Exciton Fine Structure in Lead-Halide Perovskite Nanocrystals
Philippe Tamarat a
a LP2N - Institut d'Optique, Université de Bordeaux & CNRS, 33400 Talence, Francia, Talence, France
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#PerNC22. Colloidal Metal Halide Perovskite Nanocrystals: From Synthesis to Applications
Online, Spain, 2022 March 7th - 11th
Organizers: Maksym Kovalenko, Maryna Bodnarchuk and Osman Bakr
Invited Speaker, Philippe Tamarat, presentation 378
DOI: https://doi.org/10.29363/nanoge.nsm.2022.378
Publication date: 7th February 2022

Lead-halide perovskite nanocrystals (NCs) have emerged as attractive nano-building blocks for photovoltaics and optoelectronic devices. Optimization of perovskite NC-based devices relies on a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structure has long been debated. This talk will give an overview of our recent magneto-optical spectroscopic studies [1-5] revealing the entire excitonic fine structure and relaxation mechanisms in these materials, using a single-NC approach to get rid of the inhomogeneities in the NC morphologies and crystal structures. It will highlight the prominent role of the electron-hole exchange interaction in the order and splitting of the bright triplet and dark singlet exciton sublevels and discuss the effects of size, shape anisotropy and dielectric screening on the fine structure. The spectral and temporal manifestations of the thermal mixing between bright and dark excitons allows extracting the specific nature and strength of the exciton-phonon coupling, which sheds light on the remarkable photovoltaic properties of these materials and provides an explanation for their remarkably bright photoluminescence at low temperature although the ground exciton state is optically inactive. These findings make single perovskite NCs attractive for a potential use as quantum light sources.

- Fu, M ; Tamarat, P. ; Huang, H. ; Even, J. ; Rogach, A. L. ; Lounis, B. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy, Nano Letters (2017) 17, 2895-2901

10.1021/acs.nanolett.7b00064

- Fu, M ; Tamarat, P. ; Trebbia, J.-B. ; Bodnarchuk, M. I. ; Kovalenko, M. V. ; Even, J. ; Lounis, B. Unraveling exciton-phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons, Nature Communications (2018), 9, 3318

10.1038/s41467-018-05876-0

- Tamarat, P. ; Bodnarchuk, M. I. ; Trebbia, J.-B. ; Erni, R. ; Kovalenko, M. V. ; Even, J. ; Lounis, B. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state, Nature Materials (2019) 18, 717-724.

10.1038/s41563-019-0364-x

- Tamarat, P. ; Hou, L. ; Bodnarchuk, M. I. ; Trebbia, Swarnkar, A. ; Biadala, L. ; Louyer, Y. ; Bodnarchuk, M. I. ; Kovalenko, M. V. ; Even, J. ; Lounis, B. The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals, Nature Communications (2020) 11, 6001.

10.1038/s41467-020-19740-7

- Hou, L. ; Tamarat, P. ; Lounis, B. Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals, Nanomaterials (2021) 11, 1058.

10.3390/nano11041058

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info