Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing
Joseph Luther a
a National Renewable Energy Laboratory, NREL, Golden, CO, USA.
Proceedings of Perovskite and Organic Semiconductors for Next-Generation Photodetectors and Space Application (NextPDs)
Dubrovnik, Croatia, 2024 June 10th - 12th
Organizers: Michele Sessolo, Beatrice Fraboni and Marisé Garcia-Batlle
Invited Speaker, Joseph Luther, presentation 016
Publication date: 19th April 2024

Perovskite photovoltaics have been shown to recover, or heal, after radiation damage. Here, we deconvolve the effects of radiation based on different energy loss mechanisms from incident protons which induce defects or can promote efficiency recovery. We design a dual dose experiment first exposing devices to low-energy protons efficient in creating atomic displacements. Devices are then irradiated with high-energy protons that interact differently. Correlated with modeling, high-energy protons (with increased ionizing energy loss component) effectively anneal the initial radiation damage, and recover the device efficiency, thus directly detailing the different interactions of irradiation. We relate these differences to the energy loss (ionization or non-ionization) using simulation. Dual dose experiments provide insight into understanding the radiation response of perovskite solar cells and highlight that radiation-matter interactions in soft lattice materials are distinct from conventional semiconductors. These results present electronic ionization as a unique handle to remedying defects and trap states in perovskites.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info