Solution-processable two-dimensional nanomaterials (nanosheets) are attracting increasing research efforts due to their extraordinary electronic, phononic, optical and mechanical properties, which makes them promising materials for a myriad of applications (spintronic devices, field-effect transistors, nanoscale sensors, batteries, inexpensive photodetectors,
LEDs, and lasers). 2D materials can be obtained by exfoliation of bulk materials or grown on substrates by MBE or CVD. However, these methods are not suitable to produce large amounts of free-standing 2D nanosheets and lack control over their shape and lateral dimensions. Solution-based "bottom-up" colloidal chemical methods offer an appealing alternative, and are emerging as promising routes for fundamental insights as well as for industrial applications. This symposium intends to bring together the multidisciplinary scientific community working on this nascent field, and will address not only the bottom-up solution synthesis of 2D nanomaterials, but also their chemistry, physics and applications in devices.
- Advanced solution-based bottom-up synthesis of 2D nanomaterials (colloidal methods, exfoliation, metal-organic approaches)
- Physical properties of solution-based 2D nanomaterials (spectroscopy, mechanical and electronic properties, electron and spin transport)
- Chemical properties of solution-based 2D nanomaterials (chemical stability, chemical self-organization, photocatalytic activity, interaction of organic and inorganic materials)
- Self-organization of 2D nanomaterials into superstructures
- Devices based on solution-processed 2D nanomaterials (transistors, photodetectors, solar cells, LEDs, lasers)
- Theory of 2D materials (DOS, optical properties, growth mechanisms)
Christian Klinke studied physics at the University of Karlsruhe (Germany) where he also obtained his diploma degree in the group of Thomas Schimmel. In March 2000 he joined the group of Klaus Kern at the Institute of Experimental Physics of the EPFL (Lausanne, Switzerland). Then from 2003 on he worked as Post-Doc at the IBM TJ Watson Research Center (Yorktown Heights, USA) in the group of Phaedon Avouris. In 2006 then he became member of the Horst Weller group at the Universitiy of Hamburg (Germany). In 2007 he started as assistant professor at the University of Hamburg. In 2009 he received the German Nanotech Prize (Nanowissenschaftspreis, AGeNT-D/BMBF). His research was supported by an ERC Starting Grant and a Heisenberg fellowship of the German Funding Agency DFG. Since 2017 he is an associate professor at the Swansea University and since 2019 full professor at the University of Rostock.
i
Celso de Mello Donega is an Associate Professor in the Chemistry Department of the Faculty of Sciences at Utrecht University in the Netherlands. His expertise is in the field of synthesis and optical spectroscopy of luminescent materials. His research is focused on the chemistry and optoelectronic properties of nanomaterials, with particular emphasis on colloidal nanocrystals and heteronanocrystals.
Alexander Achtstein
Alexander W. Achtstein studied Physics at University of Augsburg and Ludwigs Maximilians University Munich (LMU). He recieved a PhD from Technical University of Berlin in 2013. After a postdoc period at TU Delft he returned to TU Berlin. His research concentrates on the linear and nonlinear optical as well as electronic properties of 2D semiconductors, with a focus on II-VI nanosheets and transition metal dichalcogenides.
Thomas Heine graduated in physics from TU Dresden under the guidance of Gotthard Seifert, with research stages in Montréal (Dennis R. Salahub) and Exeter (Patrick Fowler). After postdoctoral stages in Bologna (Francesco Zerbetto) and Geneva (Jacques Weber) he obtained the venia legendi in Physical Chemistry at TU Dresden. In 2008 he was appointed as Associated Professor of Theoretical Physics/Theoretical Materials Science at Jacobs University and was promoted to Full Professor in 2011. From 2015-2018 he held the Chair of Theoretical Chemistry at University of Leipzig, Germany. Since 2018 is professor of theoretical chemistry at TU Dresden in joint appointment with Helmholtz-Center Dresden-Rossendorf. His research interests include molecular framework compounds, two-dimensional materials, theoretical spectroscopy, and the development of methods and software for materials science.
Emmanuel is an ESPCI engineer and hold a master degree from universite Pierre and marie Curie in condensed matter physics. He did his PhD under supervision of Emmanuel Rosencher on the transport properties of superlattices used as infrared detector. He then did post doc in the group of Guyot Sionnest and Dubertret, working on the optoelectronic properties of nanocrystals. Since 2015 he is a CNRS researcher at Insitute for Nanoscience at Sorbonne Université. His team is dedicated to optoelectronic of confined nanomaterials
Tianquan (Tim) Lian received his PhD degree from University of Pennsylvania (under the supervision of Prof. Robin Hochstrasser) in 1993. After postdoctoral training with Prof. Charles B. Harris in the University of California at Berkeley, Tim Lian joined the faculty of chemistry department at Emory University in 1996. He was promoted to associate professor in 2002, full professor in 2005, Winship distinguished research Professor in 2007, and William Henry Emerson Professor of Chemistry in 2008. Tim Lian is a recipient of the NSF CAREER award and the Alfred P. Sloan fellowship. Tim Lian research interest is focused on ultrafast dynamics in photovoltaic and photocatalytic nanomaterials and at their interfaces.
I obtained my PhD degree in applied physics at Ghent University in 2009, studying near-infrared lead salt quantum dots. This was followed by a postdoc on quantum dot emission dynamics at Ghent University in collaboration with the IBM Zurich research lab. In 2012 I joined the Istituto Italiano di Tecnologia, where I led the Nanocrystal Photonics Lab in the Nanochemistry Department. In 2017 I returned to Ghent University as associate professor, focusing mostly on 2D and strained nanocrystals. The research in our group ranges from the synthesis of novel fluorescent nanocrystals to optical spectroscopy and photonic applications.
David J. Norris received his B.S. and Ph.D. degrees in Chemistry from the University of Chicago (1990) and Massachusetts Institute of Technology (1995), respectively. After an NSF postdoctoral fellowship with W. E. Moerner at the University of California, San Diego, he led a small independent research group at the NEC Research Institute in Princeton (1997). He then became an Associate Professor (2001–2006) and Professor (2006–2010) of Chemical Engineering and Materials Science at the University of Minnesota, where he also served as Director of Graduate Studies in Chemical Engineering (2004–2010). In 2010, he moved to ETH Zurich where he is currently Professor of Materials Engineering. From 2016 to 2019 he served as the Head of the Department of Mechanical and Process Engineering. He has received the Credit Suisse Award for Best Teacher at ETH, twice the Golden Owl Award for Best Teacher in his department, the Max Rössler Research Prize, an ERC Advanced Grant, and the ACS Nano Lectureship Award. He is a Fellow of the American Physical Society and the American Association for the Advancement of Science, and an editorial board member for ACS Photonics and Nano Letters. His research focuses on how materials can be engineered to create new and useful optical properties.
Laurens Siebbeles (1963) is leader of the Opto-Electronic Materials Section and deputy head of the Dept. of Chemical Engineering at the Delft University of Technology in The Netherlands. His research involves studies of the motion of electrons in novel nanostructured materials that have potential applications in e.g. solar cells, light-emitting diodes and nanoelectronics. Materials of interest include organic nanostructured materials, semiconductor quantum dots, nanorods and two-dimensional materials. Studies on charge and exciton dynamics are carried out using ultrafast time-resolved laser techniques and high-energy electron pulses in combination with quantum theoretical modeling.