Copper Complexes Based Dye-sensitized Solar Cells for Advanced Performance under Ambient Light Conditions
Marina Freitag a b, Yasemin Saygili b, Anders Hagfeldt b, Yiming Cao c, Paul Liska c, Michael Grätzel c
a Uppsala University, S-75105 Uppsala, Sweden
Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics
Proceedings of International Conference Asia-Pacific Hybrid and Organic Photovoltaics (AP-HOPV17)
Yokohama-shi, Japan, 2017 February 2nd - 4th
Organizers: Tsutomu Miyasaka and Iván Mora-Seró
Oral, Marina Freitag, presentation 068
Publication date: 7th November 2016

Most of the Dye-sensitized Solar Cell (DSC) research has focused on the introduction of new dyes disregarding the redox mediator or the hole transport material. Nevertheless, the next breakthrough in improved efficiency of DSCs will come from adjusting the driving force for regeneration of the oxidized dye and moving towards a solid state system.1,2

Recently copper bipyridyl complexes Cu(dmby)2 (0.97 V vs SHE), Cu(tmby)2 (0.87 V vs SHE) and Cu(dmp)2 (0.94 V vs SHE) showed impressive solar-to-electrical power conversion efficiencies of 10.3% 10.0% and 10.3%, respectively, using liquid electrolyte and the organic Y123 dye under 1000 W m-2 AM1.5G illumination. In particular, the high photovoltages of over 1.0 V were achieved by the whole series of copper complex based redox mediators without compromising photocurrent densities and despite small driving forces of 0.1 V to 0.2 V for dye regeneration.3

The use of copper complexes also leads to a breakthrough in the indoor light-harvesting. We developed a DSCs with liquid electrolyte or solid HTM, which advances over other photovoltaic technologies, including GaAs thin film solar cells, in terms of efficiency and cost under the ambient and diffuse light conditions. As a practical result, we show that the performance of copper complex based DSCs in an indoor environment results is 16 μW/cm2 (at 200 lux) and 89 μW/cm2 (at 1000 lux), it is ∼15% larger power output than of a GaAs thin film solar cell, which sofar had the best performance under low light conditions. These characteristics will enable various indoor and diffuse light applications of DSC as useful power sources in the energy harvesting field.

1. Freitag, M.; Daniel, Q.; Pazoki, M.; Sveinbjornsson, K.; Zhang, J.; Sun, L.; Hagfeldt, A.; Boschloo, G. Energy Environ. Sci., 2015,8, 2634-2637.

2. Freitag, M.; Giordano, F.; Yang, W.; Pazoki, M.; Hao, Y.; Zietz, B.; Grätzel, M.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2016, 120 (18), 9595.

3. Saygili, Y.; Söderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.; Munoz-Garcia, A. B.; Zakeeruddin, S. M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.; Kavan, L.; Moser, J.-E.; Grätzel, M.; Hagfeldt, A.; Freitag, M. J. Am. Chem. Soc. 2016.



© Fundació Scito
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info