Hybrid Nanocarbon-Based and Bio-Related Materials for Optoelectronic Devices
Ruben D. Costa a
a Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, 91058, Germany
Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics
Proceedings of International Conference Asia-Pacific Hybrid and Organic Photovoltaics (AP-HOPV17)
Yokohama-shi, Japan, 2017 February 2nd - 4th
Organizers: Tsutomu Miyasaka and Iván Mora-Seró
Oral, Ruben D. Costa, presentation 075
Publication date: 7th November 2016

Hybrid optoelectronics are heralded as the next generation of lighting and photovoltaic technologies.1 In this context, our efforts encompass three main actions, namely the development of suitable third generation of electroluminescent materials for ionic-based lighting devices, the application of nanocarbon-based hybrids in solar cells and lighting devices, and the development of bio-inspired components for lighting, energy conversion, and diagnostic applications.

Herein, carbon nanohorns will be shown as new integrative components for preparing new nanocarbon-hybrid dye-sensitized solar cells (DSSCs), resulting in several breakthroughs, namely i) the enhancement of charge transport and collection in the electrodes, ii) the development of iodine-free, solid-state electrolytes, and iii) the fabrication of platinum-free counter electrodes.2

Finally, a new strategy to stabilize any type of bio-components – i.e., enzymes, fluorescent proteins, etc. - in a rubber‐like material will be described. As an example, the latter was applied to fabricate the first bio-inspired hybrid device featuring a bottom-up energy transfer protein-based cascade coatings used for down-converting schemes. The synergy between the excellent features of fluorescent proteins and the easily processed rubber led to a 10% loss of the device performance over hundreds of hours.3  

1. a) A. L. Briseno1, P. Yang Nature Materials2009, 8, 7. b) H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu Chem. Soc. Rev. 2014, 43, 3259. c) Q. Chena, N. De Marcoa, Y. Yanga, T.-B. Songa, C.-C. Chena, H. Zhaoa, Z. Honga, H. Zhoua, Y. Yang Nanotoday, 2015, 10, 355.

2. a) R. D. Costa, S. Feihl, A. Kahnt, S. Gambhir, D. L. Officer, G. G. Wallace, M. I. Lucio, M. A. Herrero, E.Vázquez, Z. Syrgiannis, M. Prato, D. M. Guldi Adv. Mater. 2013, 25, 6513. b) R. D. Costa, F. Lodermeyer, R.Casillas, D. M. Guldi Energy Environ. Sci., 2014, 7, 1281. c) F. Lodermeyer, R. D. Costa, R. Casillas, F. T. U. Kohler, P. Wasserscheid, M. Prato, D. M. Guldi Energy Environ. Sci., 2015, 8, 241. d) F Lodermeyer, M Prato, R. D. Costa, D. M. Guldi Nanoscale, 2016, 8, 7556.

3.   a) M. D. Weber, L. Niklaus, M. Pröschel, P. B. Coto, U. Sonnewald, R. D. Costa Adv. Mater. 2015, 27, 5493 and EP-1674, 15173026.4 (positive first evaluation). b) L. Niklaus, H. Dakhil, M. Kostrzewa, P. B. Coto, U. Sonnewald, R. D. Costa Materials Horiz. 2016, 3, 340.

© Fundació Scito
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info