Perovskite Solar Cells: Crystal Structure and Interface Architecture with High Resolution TEM Observations
Satoshi Uchida a, Tae Woong Kim a, Ludmila Cojocaru a, Takashi Kondo a, Hiroshi Segawa a
a University of Tokyo, Japan, Japan
Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics
Proceedings of International Conference Asia-Pacific Hybrid and Organic Photovoltaics 2018 (AP-HOPV18)
Kitakyūshū-shi, Japan, 2018 January 28th - 30th
Organizers: Shuzi Hayase, Juan Bisquert and Hiroshi Segawa
Oral, Satoshi Uchida, presentation 028
DOI: https://doi.org/10.29363/nanoge.ap-hopv.2018.028
Publication date: 27th October 2017

Recently, organometal halide perovskite solar cells (PSCs) have received great attention. The power conversion efficiency (PCE) of PSCs have shown a dramatic increase and certified PCEs adopting mixed organic cations and halide anions have reached up to 22%. The PCE is considerably affected by photovoltaic property of each component of a PSC. Particularly, because crystal quality of materials is strongly concerned with the electronic properties such as carrier transport, investigation of detailed crystallographic information of the perovskite light absorber is essential. In spite of the significance in the crystallographic information, however, microstructural observation for crystal structure analysis of the perovskite layer has not been actively conducted. In this talk, we will report a microstructural observation about phase coexistence in the perovskite light absorber through transmission electron microscope (TEM) observation.

To obtain the crystallographic information of the perovskite light absorber, a pure methylammonium lead iodide (MAPbI3) layer was formed through spin-coating method assisted by antisolvent in a planar type PSC (Au/Spiro-MeOTAD/ MAPbI3/TiO2/FTO/Glass). MAPbI3 precursor solution used is 1.4 M and the spin-coated MAPbI3 film was annealed at 100oC for 30 min.

Surprisingly, during the high resolution (HR) TEM observation, we found coexistence of tetragonal and cubic structures in the same perovskite layer. This new observation is expected to be an important clue of the enhancement of perovskite crystal quality for highly efficient PSCs.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info