Energy-Degenerate Photon-Pair Generation from Individual CsPbBr3 Quantum Dots
Chenglian Zhu a b, Leon G. Feld a b, Simon C. Boehme a b, Ihor Cherniukh a b, Maryna I. Bodnarchukk a b, Maksym V. Kovalenko a b, Gabriele Rainò a b
a ETH Zurich, Laboratory of Inorganic Chemistry, Department of Chemistry & Applied Biosciences, Vladimir-Prelog-Weg, 1, Zürich, CH
b Laboratory for Thin Films and Photovoltaics Empa-Swiss Federal Laboratories for Materials Science and Technology Dübendorf CH-8600, Switzerland
Proceedings of Emerging Light Emitting Materials 2025 (EMLEM25)
La Canea, Greece, 2025 October 8th - 10th
Organizers: Maksym Kovalenko and Grigorios Itskos
Oral, Simon C. Boehme, presentation 032
Publication date: 17th July 2025

While single-photon emission continues to drive a broad range of photonic quantum technology, an important next goal in quantum-light generation is the preparation of correlated N-photon bundles, e.g., photon pairs. These higher-order quantum-light resources may act as enabling ingredients for various quantum technologies, including quantum teleportation1 and quantum metrology.2 A prototypical approach to generating entangled photon pairs has been the exploitation of the radiative biexciton cascade ( |XX to |X to |0) in individual epitaxially grown semiconductor quantum dots (QDs)3, 4. In an effort to search for scalable and solution-processable alternative photon-pair sources, we here investigate and engineer the radiative biexciton cascade in individual colloidal CsPbBr3 QDs. By matching their size-dependent biexciton binding energies5-9 to their size-independent phonon energies,8, 10, 11 we demonstrate the generation of temporally correlated and energy-degenerate photon pairs in large (> 15 nm) CsPbBr3 QDs. Under pulsed excitation and at cryogenic temperature, we observe a pronounced photon bunching, with g(2)(0) up to 7 in Hanbury Brown and Twiss measurements. The excitation-dependent bunching is quantitatively reproduced by multi-color numerical calculations,12 revealing the cooperative biexciton and phonon-mediated exciton emission as the origin of the pronounced bunching. Our findings provide new insights into the energy-degenerate photon-pair generation in this scalable and highly engineerable quantum-light emitting platform, marking an important step towards their application in quantum-information technologies.

 

REFERENCES

(1) Bouwmeester, D.; Pan, J.-W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Nature 1997, 390 (6660), 575-579.

(2) Giovannetti, V.; Lloyd, S.; Maccone, L. Physical review letters 2006, 96 (1), 010401.

(3) Huber, D.; Reindl, M.; Huo, Y.; Huang, H.; Wildmann, J. S.; Schmidt, O. G.; Rastelli, A.; Trotta, R. Nature communications 2017, 8 (1), 15506.

(4) Heindel, T.; Thoma, A.; von Helversen, M.; Schmidt, M.; Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Strittmatter, A.; Beyer, J. Nature communications 2017, 8 (1), 14870.

(5) Zhu, C.; Nguyen, T.; Boehme, S. C.; Moskalenko, A.; Dirin, D. N.; Bodnarchuk, M. I.; Katan, C.; Even, J.; Rainò, G.; Kovalenko, M. V. Advanced Materials 2022, 2208354.

(6) Tamarat, P.; Prin, E.; Berezovska, Y.; Moskalenko, A.; Nguyen, T. P. T.; Xia, C.; Hou, L.; Trebbia, J.-B.; Zacharias, M.; Pedesseau, L. U. Nature Communications 2023, 14 (1), 229.

(7) Nguyen, T.; Blundell, S.; Guet, C. Physical Review B 2020, 101 (12), 125424.

(8) Amara, M.-R.; Said, Z.; Huo, C.; Pierret, A.; Voisin, C.; Gao, W.; Xiong, Q.; Diederichs, C. Nano Letters 2023, 23 (8), 3607-3613.

(9) Cho, K.; Sato, T.; Yamada, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Suzuura, H.; Kanemitsu, Y. ACS nano 2024, 18 (7), 5723-5729.

(10) Zhu, C.; Feld, L. G.; Svyrydenko, M.; Cherniukh, I.; Dirin, D. N.; Bodnarchuk, M. I.; Wood, V.; Yazdani, N.; Boehme, S. C.; Kovalenko, M. V. Adv. Opt. Mater. 2024, 2301534.

(11) Cho, K.; Tahara, H.; Yamada, T.; Suzuura, H.; Tadano, T.; Sato, R.; Saruyama, M.; Hirori, H.; Teranishi, T.; Kanemitsu, Y. Nano Lett. 2022.

(12) Nair, G.; Zhao, J.; Bawendi, M. G. Nano letters 2011, 11 (3), 1136-1140.

The project was supported by the Swiss National Science Foundation (Grant No. 200021_192308, "Q-Light-Engineered Quantum Light Sources with Nanocrystal Assemblies"), by the Weizmann-ETH Zürich Bridge Program (MORE), by the Air Force Office of Scientific Research under award number FA8655-21-1 7013, and by the European Research Council (grant agreement No. 819740, SCALE-HALO).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info