Publication date: 17th July 2025
While single-photon emission continues to drive a broad range of photonic quantum technology, an important next goal in quantum-light generation is the preparation of correlated N-photon bundles, e.g., photon pairs. These higher-order quantum-light resources may act as enabling ingredients for various quantum technologies, including quantum teleportation1 and quantum metrology.2 A prototypical approach to generating entangled photon pairs has been the exploitation of the radiative biexciton cascade (├ |XX〉 to ├ |X〉 to ├ |0〉) in individual epitaxially grown semiconductor quantum dots (QDs)3, 4. In an effort to search for scalable and solution-processable alternative photon-pair sources, we here investigate and engineer the radiative biexciton cascade in individual colloidal CsPbBr3 QDs. By matching their size-dependent biexciton binding energies5-9 to their size-independent phonon energies,8, 10, 11 we demonstrate the generation of temporally correlated and energy-degenerate photon pairs in large (> 15 nm) CsPbBr3 QDs. Under pulsed excitation and at cryogenic temperature, we observe a pronounced photon bunching, with g(2)(0) up to 7 in Hanbury Brown and Twiss measurements. The excitation-dependent bunching is quantitatively reproduced by multi-color numerical calculations,12 revealing the cooperative biexciton and phonon-mediated exciton emission as the origin of the pronounced bunching. Our findings provide new insights into the energy-degenerate photon-pair generation in this scalable and highly engineerable quantum-light emitting platform, marking an important step towards their application in quantum-information technologies.
REFERENCES
(1) Bouwmeester, D.; Pan, J.-W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Nature 1997, 390 (6660), 575-579.
(2) Giovannetti, V.; Lloyd, S.; Maccone, L. Physical review letters 2006, 96 (1), 010401.
(3) Huber, D.; Reindl, M.; Huo, Y.; Huang, H.; Wildmann, J. S.; Schmidt, O. G.; Rastelli, A.; Trotta, R. Nature communications 2017, 8 (1), 15506.
(4) Heindel, T.; Thoma, A.; von Helversen, M.; Schmidt, M.; Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Strittmatter, A.; Beyer, J. Nature communications 2017, 8 (1), 14870.
(5) Zhu, C.; Nguyen, T.; Boehme, S. C.; Moskalenko, A.; Dirin, D. N.; Bodnarchuk, M. I.; Katan, C.; Even, J.; Rainò, G.; Kovalenko, M. V. Advanced Materials 2022, 2208354.
(6) Tamarat, P.; Prin, E.; Berezovska, Y.; Moskalenko, A.; Nguyen, T. P. T.; Xia, C.; Hou, L.; Trebbia, J.-B.; Zacharias, M.; Pedesseau, L. U. Nature Communications 2023, 14 (1), 229.
(7) Nguyen, T.; Blundell, S.; Guet, C. Physical Review B 2020, 101 (12), 125424.
(8) Amara, M.-R.; Said, Z.; Huo, C.; Pierret, A.; Voisin, C.; Gao, W.; Xiong, Q.; Diederichs, C. Nano Letters 2023, 23 (8), 3607-3613.
(9) Cho, K.; Sato, T.; Yamada, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Suzuura, H.; Kanemitsu, Y. ACS nano 2024, 18 (7), 5723-5729.
(10) Zhu, C.; Feld, L. G.; Svyrydenko, M.; Cherniukh, I.; Dirin, D. N.; Bodnarchuk, M. I.; Wood, V.; Yazdani, N.; Boehme, S. C.; Kovalenko, M. V. Adv. Opt. Mater. 2024, 2301534.
(11) Cho, K.; Tahara, H.; Yamada, T.; Suzuura, H.; Tadano, T.; Sato, R.; Saruyama, M.; Hirori, H.; Teranishi, T.; Kanemitsu, Y. Nano Lett. 2022.
(12) Nair, G.; Zhao, J.; Bawendi, M. G. Nano letters 2011, 11 (3), 1136-1140.
The project was supported by the Swiss National Science Foundation (Grant No. 200021_192308, "Q-Light-Engineered Quantum Light Sources with Nanocrystal Assemblies"), by the Weizmann-ETH Zürich Bridge Program (MORE), by the Air Force Office of Scientific Research under award number FA8655-21-1 7013, and by the European Research Council (grant agreement No. 819740, SCALE-HALO).