Polymeric Metal Halides with Bright, Tunable Luminescence and Versatile Processability
Kaifeng Wu a
a Dalian Institute of Chemical Physics, Chinese Academy of Science, China
Proceedings of Emerging Light Emitting Materials 2025 (EMLEM25)
La Canea, Greece, 2025 October 8th - 10th
Organizers: Maksym Kovalenko and Grigorios Itskos
Invited Speaker, Kaifeng Wu, presentation 047
Publication date: 17th July 2025

Most of current metal halide materials, including all inorganic and organic-inorganic hybrids, are crystalline materials with poor workability and plasticity that limit their application scope. Here, we develop a novel class of materials termed polymeric metal halides (PMHs) through introducing polycations into antimony-based metal halide materials as A-site cations. A series of PMHs with orange-yellow broadband emission and large Stokes shift originating from inorganic self-trapped excitons are successfully prepared, which meanwhile exhibit the excellent processability and formability of polymers. The versatility of these PMHs is manifested as the broad choices of polycations, the ready extension to manganese- and copper-based halides, and the tolerance to molar ratios between polycations and metal halides in the formation of PMHs. Additionally, we leverage the “structural tolerance” of PMHs to integrate two distinct coordination units of a single metal into a material, thereby achieving highly tunable optical properties in single-phase metal halides. The merger of polymer chemistry and inorganic chemistry thus provides a novel generic platform for the development of metal halide functional materials.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info