Metal oxide-based perovskite solar cells and their superior tolerance in the space environment
Tsutomu Miyasaka a
a Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, 2258503, Japan
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Benidorm, Spain, 2018 May 28th - 31st
Organizers: Emilio Palomares and Rene Janssen
Invited Speaker, Tsutomu Miyasaka, presentation 065
DOI: https://doi.org/10.29363/nanoge.hopv.2018.065
Publication date: 21st February 2018

Achieving high performance that exceeds the efficiency of CIGS and CdTe, perovskite solar cell is required to ensure high durability for practical applications.1 Although thermal stability of lead halide perovskite materials is determined by their compositions (generally limited to temperature <150oC), stability of device is highly affected by the kind of carrier transport materials and the quality of interfaces at the perovskite junctions. Metal oxide electron transport layers (ETLs) generally have advantage in higher thermal stability than organic ETLs. We have been working with TiO2 ETL-based multi-cation perovskite cells, which yielded efficiency over 21% by ambient air solution processes.2 Intensity dependence of their Voc shows ideality factor low enough (<1.4) for the perovskite device to work as a power source of high output voltage even under weak light.2 Such merit is expected to be applied to space satellite missions, which needs solar cells able to work under very weak sunlight (Mars and Jupiter). We have examined the durability of perovskite solar cells comprising thermally stable FA-based multi-cation perovskite absorber, TiO2 ETL, and P3HT as hole transport layer. This composition exhibited thermally stability at temperature range between -80oC and +100oC. On exposure of the cell to high energy electron and proton beams, we found high stability and tolerance of the perovskite cells in space environment, which are superior to those of Si and GaAs solar cells.3 Focusing on the advantage of lightweight and printable thin film device, future perspectives of perovskite photovoltaic devices will be discussed.

[1] N. -G. Park, M. Gratzel, T. Miyasaka, K. Zhu, and K. Emery, Nat. Energy, 2016, 1, 16152.

[2] T. Singh, T. Miyasaka, et al, Adv. Func. Mat., 2018, DOI: 10.1002/adfm.201706287.

[3] Y. Miyazawa, T. Miyasaka, et al., submitted.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info