Modulation of Intramolecular Charge Transfer Effect in Highly Efficient Non-fullerene Acceptor
Huifeng Yao a
a Institute of Chemistry, Chinese Academy of Sciences (ICCAS), China
International Conference on Hybrid and Organic Photovoltaics
Proceedings of International Conference on Hybrid and Organic Photovoltaics (HOPV18)
Benidorm, Spain, 2018 May 28th - 31st
Organizers: Emilio Palomares and Rene Janssen
Oral, Huifeng Yao, presentation 096
DOI: https://doi.org/10.29363/nanoge.hopv.2018.096
Publication date: 21st February 2018

Recently, the emerging non-fullerene electron acceptor has replacing the leading role of fullerene derivatives in the field of organic solar cells (OSCs). In our work, via modulation of the intermolecular charge transfer (ICT) effect, we designed and synthesized a serial of novel small molecule acceptors, which showed very good photovoltaic performance in the OSCs. First, we weakened the ICT effect of the famous acceptor ITIC via replacing its benzene-based terminal group with its thiophene-based counterpart to synthesize the ITCC and ITCC-m, which have up-shifted the lowest unoccupied molecular orbit (LUMO) levels and large bandgaps. The OSCs based on ITCC showed increased output voltages. Then we enhanced the ICT effect of IEIC and prepared the narrowed bandgap acceptors IEICO and IEICO-4F, which demonstrated very high short-circuit current densities in the devices at low voltages losses. The designed acceptor have very good applications in the single-junction, tandem, ternary and semi-transparent OSCs. Recently, the emerging non-fullerene electron acceptor has replacing the leading role of fullerene derivatives in the field of organic solar cells (OSCs). In our work, via modulation of the intermolecular charge transfer (ICT) effect, we designed and synthesized a serial of novel small molecule acceptors, which showed very good photovoltaic performance in the OSCs. First, we weakened the ICT effect of the famous acceptor ITIC via replacing its benzene-based terminal group with its thiophene-based counterpart to synthesize the ITCC and ITCC-m, which have up-shifted the lowest unoccupied molecular orbit (LUMO) levels and large bandgaps. The OSCs based on ITCC showed increased output voltages. Then we enhanced the ICT effect of IEIC and prepared the narrowed bandgap acceptors IEICO and IEICO-4F, which demonstrated very high short-circuit current densities in the devices at low voltages losses. The designed acceptor have very good applications in the single-junction, tandem, ternary and semi-transparent OSCs.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info