Towards Predictive and Affordable Computational Models for CO2 Electroreduction
Federico Calle-Vallejo a
a University of Barcelona, Carrer de Martí i Franquès, 1, Barcelona, Spain
Proceedings of International Conference on Frontiers in Electrocatalytic Transformations (INTERECT)
València, Spain, 2021 November 22nd - 23rd
Organizers: Elena Mas Marzá and Ward van der Stam
Invited Speaker, Federico Calle-Vallejo, presentation 015
DOI: https://doi.org/10.29363/nanoge.interect.2021.015
Publication date: 10th November 2021

Computational models of electrocatalytic reactions based on the computational hydrogen electrode [1] have greatly contributed to the discovery and enhancement of catalysts for numerous reactions [2]. Because of its intrinsic complexity, the CO2 reduction reaction (CO2RR) is, so far, a remarkable exception to the rule [3]. The interplay of several factors such as electrode morphology, local and bulk pH, electrolyte effects, mass transport, etc. make it difficult for CO2RR computational models to be simultaneously predictive yet affordable [4, 5].

Although the shortcomings are usually ascribed to the disregard of kinetics in CHE-based models, in this talk I will mention two thermodynamic factors that also jeopardize their accuracy: (I) the lack or insufficient incorporation of water-adsorbate interactions for the CO2RR intermediates, and (II) the presence of systematic errors in the gas-phase molecules calculated with DFT. I will show that relatively inexpensive solutions to these two problems exist that lead to better quantitative agreement with experiments [6, 7].

Time permitting, I will show that gas-phase errors are also significant for several other reactions but can be swiftly corrected [8].

 

References

[1] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. R. K. J. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108 (2004) 17886-17892.

[2] Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 355 (2017) eaad4998.

[3] Z. P. Jovanov, H. A. Hansen, A. S. Varela, P. Malacrida, A. A. Peterson, J. K. Nørskov, I. E. L. Stephens, I. Chorkendorff, J. Catal. 343 (2016), 215-231.

[4] S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev 119 (2019) 7610-7672.

[5] Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 4 (2019) 732-745.

[6] L. P. Granda-Marulanda, A. Rendón-Calle, S. Builes, F. Illas, M. T. M. Koper, F. Calle-Vallejo, ACS Catal. 10 (2020) 6900-6907.

[7] A. Rendón-Calle, S. Builes, F. Calle-Vallejo, Appl. Catal., B 276 (2020) 119147.

[8] R. Urrego-Ortiz, S. Builes, F. Calle-Vallejo, ChemCatChem 13 (2021) 2508-2516.

© Fundació Scito
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info