Interfacial Charge Transfer and Transport Dynamics in Lead Halide Perovskite Solar Cells
Yasuhiro Tachibana a
a RMIT University
Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics
Proceedings of International Conference on Perovskite and Organic Photovoltaics and Optoelectronics (IPEROP19)
Kyōto-shi, Japan, 2019 January 27th - 29th
Organizers: Hideo Ohkita, Atsushi Wakamiya and Mohammad Nazeeruddin
Invited Speaker Session, Yasuhiro Tachibana, presentation 064
Publication date: 23rd October 2018

Perovskite solar cells have been recognized as a newly emerging solar cell with the potential of achieving high efficiency with a low cost fabrication process. In particular, facile solution processed cell fabrication facilitated rapid development of optimum cell structure and composition. Over the last few years, the cell efficiency has exceeded 22%.


A typical perovskite solar cell employs a perovskite layer sandwiched by p-type semiconductor (such as spiro-OMeTAD, PEDOT or NiO) and n-type semiconductor (such as TiO2, ZnO or PCBM) layers. Following light absorption, an electron and a hole are separated at the perovskite film interface, and are collected at the back electrodes. Choice of the most suitable solar cell structure is crucial to improve the performance further. In this presentation, we will present parameters controlling charge separation and recombination dynamics at the perovskite interfaces employing a series of transient absorption and emission spectroscopies. Nanosecond transient emission spectroscopy (Vis-ns-TES) clarifies charge separation processes, while Vis-NIR submicrosecond-millisecond transient absorption spectroscopies (NIR-smm-TAS) identify charge separation efficiency and charge recombination rates. Correlation of the dynamics results with the solar cell performance will be discussed [1]. An optimum cell structure for methylammonium lead iodide (MAPbI3) perovskite sandwiched by TiO2 and spiro-OMeTAD layers, among planar heterojunction, mesoporous structure and extremely thin absorber structure will be identified.[2]

This work was financially supported by the JST PRESTO program (Photoenergy Conversion Systems and Materials for the Next Generation Solar Cells) and partly by JSPS KAKENHI Grant Number JP16K05885. The author also acknowledges Australian Research Council (ARC) LIEF grant (LE170100235) for the financial supports.

© Fundació Scito
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info