Publication date: 17th July 2025
With the global push toward sustainable energy technologies, the development of efficient and durable electrocatalysts has become a research priority. Real-time in situ studies are essential to understand the dynamic behavior of catalysts under operational conditions. X-ray absorption spectroscopy (XAS) offers a unique, element-specific probe of electronic and structural changes at the active sites of electrocatalysts during electrochemical reactions.
At BAM, collaborative research efforts leverage the advanced capabilities of the BAMline [1] at the Berlin Synchrotron BESSY-II to study electrocatalytic materials under realistic working conditions. As a dedicated materials research beamline, the BAMline enables in situ and operando XAS across different time and length scales, making it ideally suited for monitoring catalytic transformations in real time.
This presentation highlights the analytical strengths and sample environments developed for electrochemical cells at BAM, showcasing their application to electrocatalysis for energy conversion (e.g., water splitting, CO₂ reduction). Emphasis will be placed on how these insights contribute to the rational design and real-time optimization of functional materials for a sustainable energy future [2].