Thin-Film Plasmonic Supercrystals
Florian Schulz a, Matias Herran b, Niclas Mueller c, Sabrina Juergensen c, Felix Lehmkühler d, Fabian Westermeier d, Eduardo Barros e, Juan Barrios a, Jules Marcone f, Matias Feldmann g, Mathieu Kociak f, Marianne Impéror-Clerc f, Holger Lange h, Emiliano Cortés i, Cyrille Hamon f, James Utterback g, Stephanie Reich c
a University of Hamburg, Germany, Luruper Chaussee, 149, Hamburg, Germany
b Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
c Freie Universität Berlin, Arnimallee 14, Berlin, Germany
d Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
e Universidade Federal do Ceará, Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici Bloco 714, Fortaleza, CE 60455-760, Brazil
f CNRS-Université Paris Saclay, Boulevard Thomas Gobert, 10, Palaiseau, France
g Sorbonne Université, Place Jussieu, 4, Paris, France
h University of Potsdam, Am Neuen Palais, 10, Potsdam, Germany
i University of Munich (LMU), Geschwister-Scholl-Platz, 1, München, Germany
Proceedings of MATSUS Fall 2025 Conference (MATSUSFall25)
B1 Emergent Properties in Nanomaterials: Synthesis, Phenomena, and Applications - #EmergentNano
València, Spain, 2025 October 20th - 24th
Organizers: Dmitry Baranov, Katherine Shulenberger and James Utterback
Invited Speaker, Florian Schulz, presentation 125
Publication date: 21st July 2025

The synthesis and characterization of thin-film plasmonic supercrystals of gold nanoparticles will be discussed.[1,2] The dense packing of the nanoparticles in the supercrystals leads to emergent optical properties due to extreme light-matter interactions.[3] The resulting enhanced near-fields in the structures can be exploited for surface-enhanced spectroscopies but also for plasmonic photocatalysis. [4,5] Towards such applications it is, in turn, also important to understand the thermal properties of the materials on relevant timescales.[6,7] The correlation of electron microscopy, spectroscopy and small-angle X-ray-scattering helps to understand how nanoparticle surface chemistry affects structure formation and how structure dictates the emerging properties. This is in particular interesting for anisotropic nanoparticles where the interplay of shape anisotropy and ligand properties leads to interesting new structures and near-field distributions which can be related to polarization-dependent optical properties.[8] With binary mixtures even more complex geometries can be obtained, providing plenty of room to explore for these polaritonic materials. 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info