Publication date: 21st July 2025
Nowadays, one of the main challenges our society is facing is the mitigation and reverse of climate change. For this purpose, we must use and store renewable energy to be used as fuels, electricity or to produce fine chemicals. One of the most attractive alternatives is the use of sunlight to drive these processes given that the energy coming from the sun to Earth in one hour, if fully harnessed, is enough to energetically sustain the whole planet for a full year. In this context, using sunlight to drive redox transformations is a promising technology to decarbonize transportation, heating and fine chemicals sectors.
Sunlight driven processes are complex since they involve several steps that need to take place simultaneously in a harmoniously and synchronized manner. Firstly, the light, with the right energy, is absorbed by promoting electrons from the highest occupied energetic level (valence band in semiconductors) to the lowest unoccupied one (conduction band in semiconductors), generating oxidative equivalents (holes). These charges are accumulated to the surface/electrolyte interface, and holes are used to oxidise a substrate and the electrons will either be used to reduce protons, CO2 to generate carbon-based products or N2 to generate NH3. When the oxidative reaction is water oxidation, this is the bottleneck of the whole solar- driven process.[1] Some approaches consider the possibility of substituting this demanding process for an organic molecule oxidation, which can be energetically less demanding and potentially also producing added value compounds.[2–3]
In this talk I will present different photo(electro)chemical systems containing catalysts to carry out different catalytic oxidative transformations (water oxidation and glycerol oxidation). Through different system designs and study of the limiting factors, different key point for more efficient and active photo(electro)catalysts will be discussed.