Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.246
Publication date: 16th December 2024
Water exposure is typically associated with adverse effects on the structural integrity and photoluminescence of lead halide perovskites, often hindering their performance in optoelectronic applications. Nevertheless, we report a humidity-induced process for the in situ synthesis of CsPbBr₃ nanocrystals (NCs) within a magnesium acetate matrix, achieving an outstanding near-unity photoluminescence quantum yield (PLQY).
Moreover, the process is facilitated by the controlled introduction of water in combination with pH modulation via an acetic acid/acetate buffer system. This setup generates hydroxide ions (OH⁻), which passivate electronic trap states within the CsPbBr₃ NCs, further enhancing their optical stability and efficiency.
By transforming water exposure from a destructive factor into a beneficial tool, this method represents a novel paradigm in perovskite chemistry as an advanced strategy to improve the stability and performance of lead halide perovskites through precise water and pH control.
Our approach showcases remarkable optical properties, boasting a near-unity PLQY alongside exceptional reproducibility and repeatability under low-demanding process conditions. Its greatest advantage lies in its exceptional versatility and compatibility with high-throughput roll-to-roll printing techniques, enabling the fabrication of cost-effective, large-area, and high-performance devices. As a result, this approach has the potential to significantly reduce costs, improve sustainability, and expand applications across various light-emission technologies, such as down-conversion and gas sensing.