Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.251
Publication date: 16th December 2024
Zeolitic imidazolate frameworks (ZIFs) which are a subtype of metal organic frameworks (MOFs) have been extensively used to prepare catalyst materials for a variety of electrochemical reactions for energy conversion and storage applications. Most notable examples of ZIFs used for that purpose include ZIF-8 and ZIF-67 etc. Particularly ZIF-8 with its high surface area, defined pore structure and tunable particle size is widely utilized as a platform material to prepare so-called metal- and nitrogen-doped carbon (M-N-C) catalysts with M= Co, Fe, Ni, Zn etc., which are an emerging class of catalyst materials [1], [2]. The active sites in M-N-Cs ideally have M-N4 coordination resembling to metal centres in macromolecules such as porphyrins and phthalocyanines [3]. Most representative examples of M-N-Cs include Fe-N-Cs, Co-N-Cs and Ni-N-Cs etc. which are showing promising activities for a variety of electrochemical reactions e.g. oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR) and hydrogen evolution reaction (HER). The structures of M-N-C catalysts are quite complex and require a fine balance between morphological, electronic, and chemical properties to reach optimal electrocatalytic activities. In this talk, I will present our activities on (i) the preparation of phase-pure M-N-C catalysts derived from ZIF-8 via active-site imprinting [4],[5] and highlight the benefits of our strategy to achieve high density of active sites and enhanced electrochemical performance levels [6] and (ii) feasibility of using gas physisorption techniques as a new approach to quantify active sites in M-N-Cs. The challenges of maximizing active site utilization and eliminating unfavourable mass-transport characteristics faced by ZIF-8 derived M-N-Cs in electrochemical energy devices e.g. fuel cells will also be briefly discussed.