Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.259
Publication date: 16th December 2024
Metal halide perovskites (MHPs), particularly CsPbBr₃, have emerged as a transformative material for optoelectronic applications, offering unparalleled properties such as high carrier mobility, exceptional optoelectronic performance, large photoluminescence quantum yield, and superior stability under humidity and thermal stress. Its solution processability allows for easy fabrication using inkjet printing, an environmentally sustainable alternative to conventional manufacturing techniques [1].
In inkjet printing of perovskites, the characteristics of the functional ink and printing conditions are crucial in determining the final device performance, with annealing temperature playing a critical role in influencing the crystal structure and, consequently, the optoelectronic properties of the printed films. This study comprehensively investigates the impact of annealing temperature in vacuum oven from 45-200 °C on the properties of inkjet-printed CsPbBr₃ nanocrystal films printed on glass substrate [2]. The CsPbBr₃ nanocrystal inks were prepared in the ratio of 3:1 in dodecane and hexane solvent with each nanocrystal measuring 7-13 nm and the printing was performed using Dimatix inkjet printer.
The results reveal a significant dependence of photoluminescence (PL) intensity on the annealing temperature, with the optimal PL emission observed for devices annealed at 180°C. The change in the PL properties are related to the impact of annealing temperature on grain size, crystallinity, and film uniformity, which directly affect optoelectronic properties and stability corroborated by various characterizing techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-Vis) absorption spectroscopy providing conclusive evidence of the temperature-induced changes in crystal structure, phase purity, and optoelectronic performance. These findings underline the critical role of precise thermal processing in achieving high-performance inkjet-printed perovskite films, positioning CsPbBr₃ as a viable material to be printed on ITO coated glass substrate for LED applications [3].
The authors are thankful for the support from the Spanish Proof of Concept MiCIN project PID2019-105658RB-I00 (EU Commission Resilience Funds)