CuTaN₂ and ZrTaN₃: Ternary Nitrides as a Platform for Next-Generation Photoactive Materials
Franziska Hegner a
a Technical University of Munich, Garching b. München, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
Emerging Inorganic Photoabsorbers: Beyond ABX3 Perovskites - #NextGenSolar
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Nakita Noel, Jay Patel and Marcello Righetto
Invited Speaker, Franziska Hegner, presentation 284
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.284
Publication date: 16th December 2024

Ternary nitrides represent an emerging class of materials with immense potential in solar energy conversion, thermoelectrics, power electronics, coatings, and superconductivity, combining distinctive bonding properties, defect tolerance, and tunable functionalities. [1], [2] However, challenges in synthesis and metastability have limited their exploration compared to oxides. Recent synthetic and computational advances are now opening pathways for their development as next-generation solar materials.

This talk showcases two visible-light-absorbing nitrides that have recently emerged and offer especially interesting optoelectronic properties for solar energy conversion, copper tantalum nitride (CuTaN₂) [3] and zirconium tantalum nitride (ZrTaN₃) [4], with an emphasis on complex physical interactions that define their electronic structures. CuTaN₂ exhibits highly anharmonic structural dynamics, as displayed by phonon calculations and finite-temperature Raman experiments. Ab initio molecular dynamics is used to reveal the microscopic mechanisms of atomic motion, which are linked to macroscopic properties including its negative thermal expansion and temperature-dependent increase in the bandgap, thus emphasizing the critical role of structural dynamics in defining optoelectronic properties. In a second example, ZrTaN₃ thin films synthesized via reactive magnetron co-sputtering are shown to exhibit strong visible light absorption and significant photoelectrochemical activity. Complementary density functional theory calculations reveal that cation disorder, particularly Wyckoff-site occupancy, significantly modulates the bandgap and orbital hybridization in this ternary compound, underscoring the impact of cation arrangement on optoelectronic properties.

These findings highlight the versatility of ternary nitrides as advanced photoactive materials and offer insights into tailoring their properties through atomic-scale engineering.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info