Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.290
Publication date: 16th December 2024
Perovskite single crystals have emerged as a promising alternative to polycrystalline samples in optoelectronics and photonics, owing to their exceptional properties such as reduced trap states, enhanced carrier mobilities, and extended diffusion lengths. Despite these advantages, their effective use in devices requires significant effort, particularly in developing specialized growth methods to produce structures with precise dimensions and geometries on a variety of substrates. This talk explores tailored growth strategies, including the capillary bridge and microfluidic-assisted approaches, which enable the synthesis of crystals with predefined shapes, sharp edges, and uniform surfaces.[1,2] By finely tuning growth conditions and controlling interactions within the precursor solution, these methods produce crystals with superior optical properties and performance, making them highly suitable for applications as waveguides and whispering gallery resonators. By achieving such well-defined features, perovskite single crystals demonstrate significant potential to address the specific demands of advanced optoelectronic and photonic devices, paving the way for innovative applications in these fields.