A walk down the waste hierarchy pyramid for lithium-ion batteries
Nicolas Schaeffer a
a CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
Sustainable energy materials and circularity - #SusMat
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Tim-Patrick Fellinger and Cristina Pozo-Gonzalo
Invited Speaker, Nicolas Schaeffer, presentation 375
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.375
Publication date: 16th December 2024

The increasing electrification of modern society is heavily dependent on electronic and energy storage devices, with lithium-ion batteries (LIBs) playing a pivotal role. Since their introduction to the market, their features — such as high energy density, large capacity, long cycle life, and minimal maintenance requirements — made them indispensable to the energy industry. As a result, the demand for LIBs is expected to grow by over twenty percent yearly by 2030,[1] stimulating demand for critical metals like lithium, cobalt, nickel, and manganese. End-of-life (EoL) LIBs present a valuable opportunity as a source of these metals, often offering higher concentrations compared to traditional mineral ores,[2] whilst their adequate management minimises environmental pollution, resource losses, and supply chain risks.[3] Although battery repurposing will also play a relevant role, the recycling industry will continue growing in the coming years driven by recent EU legislation (Regulation (EU) 2023/1542), with batteries from 2031 onwards requiring a minimum recycled content of 6 % Li, 16 % Co and 6 % Ni and further increased by 2036.

This presentation showcases the recent work at CICECO exploring the transition of EoL LIBs down the waste hierarchy, exemplifying reuse strategies for the cathodic black mass before advancing to hydrometallurgical recycling with a focus on exploiting non-aqueous solvents for the design of alternative recovery processes.

This work was partially developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC). N.S. acknowledges the European Research Council (ERC) for the starting grant ERC-2023-StG DESignSX (project 101116461).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info