Ultrafast Spin Dynamics in Chiral Metal-Halide Perovskites
Felix Deschler a
a Institute for Physical Chemistry, Universität Heidelberg, Im Neuenheimer Feld, 253, Heidelberg, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
Illuminating the Future: Advancements in Photon sources, Photodetectors, and Photonic Applications with 3D and low- dimensional metal halide perovskites - #PhotoPero
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Emmanuelle Deleporte, Blas Garrido and Juan P. Martínez Pastor
Invited Speaker, Felix Deschler, presentation 386
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.386
Publication date: 16th December 2024

Materials that combine optoelectronic function with control over the spin degree of freedom are central for emerging quantum technologies, opto-spintronics, and provide exciting avenues for generating polarized light-emission. Hybrid metal-halide perovskites exhibit spin-split Rashba bands and strong spin-orbit coupling, which offer directions for extended spin life-times of excited states and efficient optical spin manipulation. To achieve optimal performance in applications, an understanding how material chirality links to spin state properties and dynamics needs to be established.

In the first part of this talk, we will present our efforts on gaining control over spin state properties and dynamics in solution-processable chiral hybrid perovskites through compositional and structural tuning. For this, we tailor the chiral crystal symmetry in novel chiral lead-free bismuth-based materials, highly-emissive low-dimensional chiral lead-halide systems, as well as chiral-achiral heterostructures.

In the second part, we will discuss time- and space-resolved investigations of excited state and spin dynamics in our novel chiral perovskites. We will present results on spin dynamics from ultrafast Faraday Rotation, polarized recombination dynamics, as well as spatio-temporal imaging of excitations using ultrafast transient microscopies.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info