Surfactant-free colloidal syntheses of metal nanoparticles: model systems for fundamental applied catalysis and beyond
Jonathan Quinson a
a CICA-Centro Interdisciplinar de Química e Bioloxía, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15008 A Coruña, Spain
Proceedings of MATSUS Spring 2026 Conference (MATSUSSpring26)
C4 Precision synthesis of nanocrystals and nanochemistry
Barcelona, Spain, 2026 March 23rd - 27th
Organizers: ZHANZHAO LI, Baowei Zhang and Juliette Zito
Oral, Jonathan Quinson, presentation 054
Publication date: 15th December 2025

Colloidal syntheses are used worldwide to prepare various nanomaterials for multiple applications. In most cases, the colloidal syntheses proceed in the liquid phase by reduction of a precursor in presence of reducing agents. Typically, various ligands / capping agents / stabilizers are claimed to be needed for successful syntheses leading to stable colloids with size control [1] Unfortunately, those chemicals that interact with the NP surface can be detrimental for further applications where a clean surface would be preferred, for instance in catalysis or medicine.

Rather than removing those chemicals by tedious chemical- and energy-consuming steps, the Nanomaterials Engineering for Sustainable Technologies (NEST) group aims at developing surfactant-free syntheses, i.e. syntheses with a minimal amount of chemicals that lead to readily active materials, for instance for catalysis. A focus is on processes carried out at room or low temperature and using relatively safe chemicals. This approach not only brings new opportunities for new fundamental insights into nanomaterial synthesis, but also facilitates the general production and use of the nanomaterials, while it facilitates the scaling of the related nanotechnologies.

This talk will provide an overview of our achievements related to metal nanomaterials and in particular our recent findings on gold nanoparticles. Highlights will be on:

Sustainability, with the possibility to develop surfactant-free colloidal Pt [2], Ir[2], Os [3], nanoparticles, but also Au [4]. It will be illustrated how the use of additives can actually be detrimental compared to the surfactant-free approach [5].

Fundamental insights, with the example of Ir and Pt nanoparticle formation [6, 7] but also Au [8].

Size control without surfactant, with the example of Au nanoparticles obtained by ethanol-mediated or NaBH4-mediated synthesis, leveraging on reducing agent / Au molar ratio, using mixtures of reducing agents, water conductivity and/or inducing the synthesis in different ways [8-12].

Stability, the surfactant-free colloids are typically stable for months even for storage at room temperature and the cations have been overlooked knobs to boost stability and to perform syntheses at higher precursor concentrations. The stability increases in the order K+<Na+<Li+ for various colloidal sytnheses [13].

Catalytic activity, with the example of size effects studies performed for the 4-nitrophenol reduction as a model reaction for water treatment and electrochemical energy conversion with the case studies of the ethanol oxidation reaction (EOR) [4, 9, 14, 15] the oxygen evolution reaction (OER) [2] and the oxygen reduction reaction (ORR) [16]. A focus will be on showing the benefits of surfactant-free syntheses to best design and study the corresponding electrocatalysts [1, 15, 16].

The accent will be on showing that despite the absence of surfactants, the syntheses lead to stable nanoparticles with size control even at relatively high concentration of precursors. The talk will open an emerging case studies where the surfactant-free NPs are being investigated as useful model system for instance in self-driving laboratories [17].

[17] Anker, A. S.; Jensen, J. H.; Gonzalez-Duque, M.; Moreno, R.; Smolska, A.; Juelsholt, M.; Hardion, V.; Jorgensen, M. R. V.; Faina, A.; Quinson, J.; et al. Autonomous nanoparticle synthesis by design. (1) Quinson, J.; Kunz, S.; Arenz, M. Surfactant-free colloidal syntheses of precious metal nanoparticles for improved catalysts. ACS Catalysis 2023, 13, 4903–4937. DOI: 10.1021/acscatal.2c05998. (2) Quinson, J.; Neumann, S.; Wannmacher, T.; Kacenauskaite, L.; Inaba, M.; Bucher, J.; Bizzotto, F.; Simonsen, S. B.; Kuhn, L. T.; Bujak, D.; et al. Colloids for Catalysts: A Concept for the Preparation of Superior Catalysts of Industrial Relevance. Angewandte Chemie-International Edition 2018, 57, 12338-12341. DOI: 10.1002/anie.201807450. (3) Juelsholt, M.; Quinson, J.; Kjær, E. T. S.; Wang, B.; Pittkowski, R.; Cooper, S. R.; Kinnibrugh, T. L.; Simonsen, S. B.; Theil Kuhn, L.; Escudero-Escribano; et al. Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles. Beilstein Journal of Nanotechnoly 2022, 13, 230–235. DOI: 10.3762/bjnano.13.17. (4) Quinson, J.; Aalling-Frederiksen, O.; Dacayan, W. L.; Bjerregaard, J. D.; Jensen, K. D.; Jørgensen, M. R. V.; Kantor, I.; Sørensen, D. R.; Theil Kuhn, L.; Johnson, M. S.; et al. Surfactant-free colloidal syntheses of gold-based nanomaterials in alkaline water and mono-alcohol mixtures. Chemistry of Materials 2023, 35 (5), 2173–2190. DOI: 10.1021/acs.chemmater.3c00090. (5) Varga, M.; Quinson, J. Fewer, but better: on the benefits for surfactant-free colloidal syntheses of nanomaterials. ChemistrySelect 2025, 10 (5), e202404819. DOI: 10.1002/slct.202404819. (6) Mathiesen, J. K.; Quinson, J.; Blaseio, S.; Kjær, E. T. S.; Dworzak, A.; Cooper, S.; Pedersen, J. K.; Wang, B.; Bizzotto, F.; Johanna, S.; et al. Chemical insights on the formation of colloidal iridium nanoparticles from in situ X-ray total scattering: Influence of precursors and cations on the reaction pathway. Journal of the American Chemical Society 2023, 145 (3), 1769–1782. DOI: 10.1021/jacs.2c10814. (7) Mathiesen, J. K.; Quinson, J.; Dworzak, A.; Vosch, T.; Juelsholt, M.; Kjaer, E. T. S.; Schroder, J.; Kirkensgaard, J. J. K.; Oezaslan, M.; Arenz, M.; et al. Insights from In Situ Studies on the Early Stages of Platinum Nanoparticle Formation. Journal of Physical Chemistry Letters 2021, 12 (12), 3224-3231. DOI: 10.1021/acs.jpclett.1c00241. (8) Rasmussen , D. R.; Lock , N.; Quinson , J. Lights on the synthesis of surfactant-free colloidal gold nanoparticles in alkaline mixtures of alcohols and water. ChemSusChem 2025, 18 (3), e202400763. DOI: 10.1002/cssc.202400763. (9) Panagopoulos, D.; Asghari Alamdari, A.; Quinson, J. Surfactant-free colloidal gold nanoparticles: room temperature synthesis, size control and opportunities for catalysis. Materials Today Nano 2025, 29 (100600). DOI: 10.1016/j.mtnano.2025.100600. (10) Larsen, J. C. H.; Porsgaard, A. N.; Vinding, L.; Smolska, A.; Quinson, J. Room temperature synthesis of surfactant-free gold nanoparticles in alkaline water-alcohols solutions: Benefits of [ethanol+glycerol] mixtures. ChemRxiv 2025, Prepint. DOI: 10.26434/chemrxiv-2025-ct21t. (11) Jæger, F.; Pedersen, A. A.; Wacherhausen, P. S.; Smolska, A.; Quinson, J. Surfactant-free gold nanoparticles synthesized in alkaline water-ethanol mixtures: leveraging lower grade chemicals for size control of active nanocatalysts. RSC Sustainability 2025. DOI: 10.1039/D5SU00213C. (12) Fokam, H. K.; Smolska, A.; Quinson, J. Surfactant-free NaBH4-mediated synthesis of gold nanoparticles in water at room temperature: fine size control for active nanocatalysts. ChemRxiv 2025, Preprint. DOI: 10.26434/chemrxiv-2025-rwh33. (13) Andersen, K. J.; Varga, M.; Smolska, A.; Nordhal, G.; Jensen, J. H.; Moreno, R.; Bøjesen, E. D.; Anker, A. S.; Quinson, J. Positive Thinking: Countercation Effects in Colloidal Syntheses of Gold Nanoparticles. Nano Letters 2025, Accepted. DOI: 10.1021/acs.nanolett.5c04815. (14) Quinson, J.; Nielsen, T. M.; Escudero-Escribano, M.; Jensen, K. M. Ø. Room temperature syntheses of surfactant-free colloidal gold nanoparticles: the benefits of mono-alcohols over polyols as reducing agents for electrocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 131853. DOI: 10.1016/j.colsurfa.2023.131853. (15) Fokam, H. K.; Smolska, A.; Quinson, J. NaBH4-mediated syntheses of colloidal gold nanocatalysts in water: are additives really needed? ChemRxiv 2025, Preprint. DOI: 10.26434/chemrxiv-2025-h0hpb. (16) Inaba, M.; Zana, A.; Quinson, J.; Bizzotto, F.; Dosche, C.; Dworzak, A.; Oezaslan, M.; Simonsen, S. B.; Kuhn, L. T.; Arenz, M. The Oxygen Reduction Reaction on Pt: Why Particle Size and Interparticle Distance Matter. Acs Catalysis 2021, 11 (12), 7144-7153. DOI: 10.1021/acscatal.1c00652. (17) Anker, A. S.; Jensen, J. H.; Gonzalez-Duque, M.; Moreno, R.; Smolska, A.; Juelsholt, M.; Hardion, V.; Jorgensen, M. R. V.; Faina, A.; Quinson, J.; et al. Autonomous nanoparticle synthesis by design. arXiv 2025, arXiv:2505.13571

JQ is thankful to Espen D. Bøjesen, iNano, Aarhus University, Denmark, for facilitating access to the Talos F200X. This research benefited from the support of the Aarhus University Research Foundation (AUFF-E-2022-9-40). JQ thanks the Independent Research Fund (DFF) for support via a DFF-Green grant (Light-SCREEN, 3164-00128B) and MCIN/AEI/10.13039/501100011033 as well as ESF+ for his Ramón y Cajal contract (RYC2023-042920-I), together with the INTALENT program of UDC and INDITEX.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info