Modulating Surface Reactions of Natural Graphite Toward Fast-Charging Lithium-ion Batteries
Min-Sik Park a
a Department of Materials Science & Engineering, Kyung Hee University
Proceedings of MATSUS Spring 2026 Conference (MATSUSSpring26)
F2 Electrochemical Energy Storage for a Green Future: Innovations in Materials, Manufacturing, and Recycling
Barcelona, Spain, 2026 March 23rd - 27th
Organizers: Taeseup Song and Chiharu Tokoro
Invited Speaker, Min-Sik Park, presentation 427
Publication date: 15th December 2025

During fast-charging, uneven lithium plating on the surface of commercial graphite anode impedes the electrochemical performance of lithium-ion batteries, causing a safety issue. The formation of a passivation layer, the solid-electrolyte interphase (SEI), due to side reactions with the organic electrolyte, correlates with long-term cycling performance under fast-charging conditions, necessitating comprehensive analysis. Herein, it is demonstrated that a molybdenum disulfide (MoS2) coating on natural graphite (NG) modulates the properties of the SEI layer, enabling reduction of the charging time and the enhancement of long-term cycling performance. MoS2 spontaneously transforms into Li2S and Mo nanoclusters through intercalation and conversion with Li+, altering the chemical composition and stability of the SEI layer on the NG, promoting faster Li+ transport, and reducing interfacial resistance. The MoS2-NG anode shows improved fast-charging capability and cycling performance under 3.0 C-charging and 1.0 C-discharging over 300 cycles without compromising energy density. In the full-cell configuration, a charging time of 14.7 min at 80% state of charge is achieved, making it suitable for electric vehicle applications.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info