Publication date: 15th December 2025
Liquid sunlight can be considered as a new form of chemical energy converted and stored in chemical bonds from solar energy. Efficient capture and storage of solar energy can provide unlimited renewable power sources and drive the capture and conversion of greenhouse gases such as CO2 into valuable chemicals. Solar-to-chemical production using a fully integrated system is an attractive goal, but to date, there has yet to be a system that can demonstrate the required efficiency, and durability, or be manufactured at a reasonable cost. One can learn a great deal from natural photosynthesis where the conversion of carbon dioxide and water to carbohydrates is routinely carried out at a highly coordinated system level. There are several key features worth mentioning in these systems: spatial and directional arrangement of the light-harvesting components, charge separation and transport, as well as the desired chemical conversion at catalytic sites in compartmentalized spaces. To design an efficient artificial photosynthetic materials system, at the level of the individual components: better catalysts need to be developed, new light-absorbing semiconductor materials will need to be discovered, architectures will need to be designed for effective capture and conversion of sunlight, and more importantly, processes need to be developed for the efficient coupling and integration of the components into a complete artificial photosynthetic system. In this talk, I will introduce the original nanowire-based photochemical diode system design, and discuss the challenges associated with fixing CO2 through traditional chemical catalytic means, contrasted with the advantages and strategies that biology employs through enzymatic catalysts to produce more complex molecules at higher selectivity and efficiency. Introducing microorganisms as whole-cell electrocatalysts into the overall photochemical diode system led to the generation of powerful photosynthetic biohybrids capable of converting sunlight, H2O, and CO2 into food, fuels, pharmaceuticals, and materials.
