Perovskite Tandem Photovoltaics: Employing 2D/3D Perovskite Heterostructure for Perovskite Top Solar Cell with Engineered Bandgap
Ihteaz M. Hossain a b, Saba Gharibzadeh a b, Paul Fassl a b, Bahram A. Nejand a b, Tobias Abzieher b, Moritz Schultes c, Erik Ahlswede c, Philip Jackson c, Michael Powala c, Sören Schäfer d, Michael Rienäcker d, Tobias Wietler d, Robby Peibst d e, Uli Lemmer a b, Bryce S. Richards a, Ulrich W. Paetzold a b
a Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
b Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
c Zentrum für Sonnenenergie‐ und Wasserstoff‐Forschung Baden‐Württemberg (ZSW) Stuttgart, Germany, Meitnerstraße, 1, Stuttgart, Germany
d Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg, 1, Emmerthal, Germany
e Institute of Electronic Materials and Devices, Leibniz Universität Hannover, Germany, Schneiderberg, 32, Hannover, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Fall Meeting19 (NFM19)
#PERInt19. Interplay of composition, structure and electronic properties in halide-perovskites
Berlin, Germany, 2019 November 3rd - 8th
Organizer: Pablo P. Boix
Oral, Paul Fassl, presentation 212
DOI: https://doi.org/10.29363/nanoge.nfm.2019.212
Publication date: 18th July 2019

The material class of mixed-halide organic-inorganic hybrid perovskites exhibits a tunable bandgap (EG) from 1.5 - 3.1 eV, simply by adjusting the ratio of the halide precursors. This characteristic makes these materials excellent candidates for low-cost multi-junction photovoltaics. In particular, wide-bandgap perovskites (WBP) with an EG ~ 1.7 eV are attractive top-cell materials to improve the power conversion efficiency (PCE) of single-junction silicon or CIGS solar cells in a two-terminal or four-terminal (4T) tandem configuration.

Recently, we developed a 2D/3D perovskite heterostructure by spin-coating n-butylammonium bromide (BABr) on top of a 3D double-cation WBP (EG ~ 1.72 eV) absorber (FA0.83Cs0.17Pb(I0.6Br0.4)3), resulting in a record open-circuit voltage of up to 1.31 V and a stable output power of up to 19.4% [1]. In this contribution, we show that double-cation perovskite solar cells employing various ratios of halide precursors (FA0.83Cs0.17Pb(IxBr1-x)3; 0.45 < x < 0.75) with 2D/3D heterostructure yield enhanced open-circuit voltages and PCEs over a wide range of bandgaps (1.63 – 1.83 eV) compared to reference devices without the heterostructure. The stable performance of devices and high reproducibility of the passivation approach is verified. We will also show our latest developments of the 4T tandem solar cells using such semitransparent perovskite solar cells with engineered bandgap, leading to PCEs > 26%. Possible strategies to further increase the tandem solar cell performance towards a PCE > 30% will be discussed.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info