Facile Surfactant-Assisted Synthesis of BiVO4 Nanoparticles for Solar Water Splitting
Laura Montañés a, Camilo A. Mesa a, Ana Gutiérrez-Blanco a, Christian Robles a, Beatriz Julián-López a, Sixto Giménez a
a Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, Castelló de la Plana, Spain
Proceedings of nanoGe Fall Meeting 2021 (NFM21)
#SolCat21. (Photo-)Electrocatalysis: From the Atomistic to System Scale
Online, Spain, 2021 October 18th - 22nd
Organizers: Karen Chan, Sophia Haussener and Brian Seger
Poster, Laura Montañés, 271
Publication date: 23rd September 2021
ePoster: 

The capture of solar energy and its direct conversion into chemical energy using artificial photosystems is one of the most promising routes to provide the global demand for energy in a sustainable way. Among the different existing approaches, the photoelectrochemical energy conversion (PEC) has attracted considerable interest for solar energy storage through the formation of chemical bonds in form of dihydrogen molecules or carbon-based fuels. [1] These systems are normally based on semiconductors that absorb solar energy, that is, photoanodes (photooxidation reaction) and photocathodes (photoreduction reaction), coupled to catalyst and connected by an aqueous electrolyte. However, the main challenge lies in the lack of efficient, inexpensive, stable and scalable semiconductors, particularly in the photoanode, where the oxygen evolution reaction (OER) takes place.

Metal oxides are the most studied as photoanodes since they have a valence band with a thermodynamically favourable energy for the OER. Numerous types of semiconductors have been tested, such as titanium dioxide (TiO2), hematite (α-Fe2O3), bismuth vanadate (BiVO4) and tungsten trioxide (WO3) among others. [2] Bismuth vanadate (BiVO4), has attracted attention in the last two decades as one of the most robust, efficient, and inexpensive photoanode for water electrolysis. BiVO4 is characterized by having a bandgap of 2.4 eV, allowing it to absorb a greater amount of solar energy compared to the previously mentioned oxides. [3]

In this poster, I will present a novel synthesis to obtain bismuth vanadate nanoparticles using a surfactant as distribution agent and to control the size. This synthesis offers the advantage of being carried out at low temperature, in an aqueous medium and using inexpensive precursors. These nanoparticles provide a high surface area in addition to multiple photoelectrodes designs to obtain efficient devices.

© Fundació Scito
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info