Double Peak Emission in Lead Halide Perovskites by Self-absorption
Konstantin Schötz a, Abdelrahman M. Askar b, Wei Peng c, Dominik Seeberger a, Tanaji P. Gujar a, Mukundan Thelakkat a, Sven Huettner a, Osman M. Bakr c, Karthik Shankar b, Anna Köhler a, Fabian Panzer a
a University of Bayreuth, Germany, Universitätsstraße, 30, Bayreuth, Germany
b Department of Electrical and Computer Engineering, University of Alberta, Canada
c King Abdullah University of Science and Technology (KAUST) - Saudi Arabia, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
International Conference on Hybrid and Organic Photovoltaics
Proceedings of Online International Conference on Hybrid and Organic Photovoltaics (OnlineHOPV20)
Online, Spain, 2020 May 26th - 29th
Organizers: Tracey Clarke, James Durrant, Annamaria Petrozza and Trystan Watson
Poster, Konstantin Schötz, 083
Publication date: 22nd May 2020
ePoster: 

Despite the rapidly increasing efficiencies of perovskite solar cells, the optoelectronic properties of this material class are not completely understood. Especially when measured photoluminescence (PL) spectra consist of multiple peaks, their origin is still debated. In this work, we investigate in detail double peak PL spectra of halide perovskite thin films and single crystals with different material compositions. By different optical spectroscopic approaches and quantitative models, we demonstrate that the additional PL peak results from an extensive self-absorption effect, whose impact is intensified by strong internal reflections. This self-absorption accounts for the unusual temperature dependence of the additional PL peak and it implies that absorption until far into the perovskite's Urbach tail is important. The internal reflections entail that even for thin films self-absorption can have a significant contribution to the PL spectrum. Our results allow for a clear assignment of the PL peaks by differentiating between optical effects and electronic transitions, which is a necessary requirement for understanding the optoelectronic properties of halide perovskites.

KoS acknowledges financial support from the German National Science Foundation (Project KO 3973/2-1 and GRK 1640). AK, SH and MT acknowledges support by the Bavarian State Ministry of Science, Research, and the Arts for the Collaborative Research Network ‘‘Solar Technologies go Hybrid’’. KaS acknowledges financial support from NSERC (grant number 06630) and NRC (grant number A1-014009). WP and OMB acknowledge the financial support of KAUST.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info