The Life and Death of a Quantum Dot
Jennifer Hollingsworth a
a Center for Integrated Nanotechnologies, Los Alamos National Laboratory, United States
Materials for Sustainable Development Conference (MATSUS)
Proceedings of Online nanoGe Fall Meeting 20 (OnlineNFM20)
#NCFun20. Fundamental Processes in Semiconductor Nanocrystals
Online, Spain, 2020 October 20th - 23rd
Organizers: Matthew Beard, Iwan Moreels and Hilmi Volkan Demir
Invited Speaker, Jennifer Hollingsworth, presentation 046
Publication date: 4th October 2020

Solution-processed quantum dots (QDs) are finding applications in a wide-range of technologies from displays and lighting to photovoltaics and photodetectors. Advances in real-world technologies have been enabled by an increasing ability to fine-tune opto-electronic properties with strategies including quantum confinement effects, advanced heterostructuring (band-structure engineering at the nanoscale), and chemical manipulation of interfaces and surfaces. Taken together, these strategies have yielded numerous breakthroughs and insights into key fundamental excited-state processes in semiconductor nanocrystals. In our lab, we have focused on developing heterostructures that lead to suppression of non-radiative processes, including blinking, photobleaching, and Auger recombination.[1-8] Despite realizing novel properties that support a wide range of applications,[9-13] we cannot claim to have found the perfect QD. Even the most robust nanocrystal will fail in its most fundamental of property – the ability to emit light – in the face of specific stressors, such as high photon flux, temperature, and exposure to atmospheric oxygen/water.

Previously, we developed a “single-QD stress test” that was used to evaluate degradation-photophysics in two types of ultrastable, “giant” core/thick-shell QDs (gQDs).[14] Here, I will describe the latest in our efforts to elucidate QD failure mechanisms, with the aim to pinpoint structural and chemical features leading to the “killing” of a QD.[15] Specifically, we developed a method based on solid-state spectroscopy to obtain kinetic and thermodynamic parameters of photo-thermal degradation in single QDs, systematically varying ambient temperature and photon-pump fluence. We described the resulting degradation in emission with a modified form of the Arrhenius equation and showed that this reaction proceeds via pseudo zero-order reaction kinetics by a surface-assisted process with an activation energy of 60 kJ/mol. We note that the rate of degradation is ~12 orders of magnitude slower than the rate of excitonic processes, indicating that the reaction rate is not determined by ultrafast electron/hole trapping. We further determined that full-power LED-like excitation can add 90-140 K of heat to the nanocrystals due to high excitation rates and associated nonradiative relaxation. The specific reactions that are responsible for photo-oxidative degradation in gQDs are as yet unknown. However, at least one of the primary degradation reactions is now known to be a zero-order process with a reaction activation energy that is independent of photon flux or wavelength. In the search for new robust light-emitting nanocrystals, the new analysis method will enable direct comparisons between differently engineered nanomaterials or different organic/inorganic surface treatments.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info