Proceedings of Online nanoGe Fall Meeting 20 (OnlineNFM20)
Publication date: 4th October 2020
In this talk I will present two routes to computationally develop new photocatalysts. In the first one, layered noble metal chalconides and pnictonides [1], which show potential to be photocatalytically active, are exfoliated, and the resulting layers are investigated with respect to their properties, most importantly their stability and performance to (photo)catalyze hydrogen and oxygen evolution reactions in dependence on the pH and other factors. We have successfully applied this strategy recently to a series of noble-metal chalcogenides [2], phosphochalcogenides [3,4] and pnictonides [5].
In the second route, photoactive molecules, for example phorphyrin derivatives [6], are incorporated into synthetic framework materials such as metal-organic frameworks (MOFs) [7], where stacking provides additional band dispersion and supports charge carrier separation [8]. A similar approach is possible for covalent-organic frameworks (COFs) [9].
We thank Deutsche Forschungsgemeinschaft (DFG) for financial support and ZIH Dresden for computer time.