Two routes to computationally design new 2D photoelectrocatalysts
Thomas Heine a
a Technical University (TU) Dresden, Mommsenstr. 13, Dresden, 1062, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of Online nanoGe Fall Meeting 20 (OnlineNFM20)
#Sol2D20. Solution-based Two-dimensional Nanomaterials
Online, Spain, 2020 October 20th - 23rd
Organizers: Christian Klinke, Sandrine Ithurria and Celso de Mello Donega
Invited Speaker, Thomas Heine, presentation 067
Publication date: 4th October 2020

In this talk I will present two routes to computationally develop new photocatalysts. In the first one, layered noble metal chalconides and pnictonides [1], which show potential to be photocatalytically active, are exfoliated, and the resulting layers are investigated with respect to their properties, most importantly their stability and performance to (photo)catalyze hydrogen and oxygen evolution reactions in dependence on the pH and other factors. We have successfully applied this strategy recently to a series of noble-metal chalcogenides [2], phosphochalcogenides [3,4] and pnictonides [5].

In the second route, photoactive molecules, for example phorphyrin derivatives [6], are incorporated into synthetic framework materials such as metal-organic frameworks (MOFs) [7], where stacking provides additional band dispersion and supports charge carrier separation [8]. A similar approach is possible for covalent-organic frameworks (COFs) [9].

We thank Deutsche Forschungsgemeinschaft (DFG) for financial support and ZIH Dresden for computer time.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info