Synthesis of Blue-Emitting Silver Phenylselenolate in Thin Film and Crystal Forms.
Watcharaphol Paritmongkol a b, Woo Seok Lee b c, Tomoaki Sakurada b, Wenbi Shcherbakov-Wu a b, William Tisdale b
a Massachusetts Institute Of Technology (MIT), Department of Chemistry, Massachusetts Avenue, 77, Cambridge, United States
b Massachusetts Institute of Technology (MIT), Department of Chemical Engineering, Green Bldg, Cambridge, MA 02142, EE. UU., Cambridge, United States
c Massachusetts Institute of Technology (MIT), Department of Materials Science and Engineering (DMSE), Massachusetts Avenue, 77, Cambridge, United States
Materials for Sustainable Development Conference (MATSUS)
Proceedings of Online nanoGe Fall Meeting 20 (OnlineNFM20)
#Sol2D20. Solution-based Two-dimensional Nanomaterials
Online, Spain, 2020 October 20th - 23rd
Organizers: Christian Klinke, Sandrine Ithurria and Celso de Mello Donega
Contributed talk, Watcharaphol Paritmongkol, presentation 147
Publication date: 4th October 2020

Silver phenylselenolate (AgSePh) is an emerging excitonic two-dimensional semiconducting member of a hybrid metal-organic chalcogenolate family. In addition to its two-dimensional structure with high exciton binding energy, strong in-plane anisotropy, and a narrow emission spectrum at 467 nm, AgSePh does not contain any toxic element and is tolerant to both polar and non-polar solvents. AgSePh can be synthesized by a solution-phase reaction as well as a scalable vapor-phase method. Here, we show by testing 24 solvents – with different polarities, boiling points and functional groups – that complexation between silver cations and solvent molecules is the key to an increasing size of AgSePh crystals. With the introduction of amine solvents, we are able to increase the size of AgSePh crystals grown by the solution-phase biphasic reaction from ~3 µm to >200 µm and that of AgSePh thin films prepared by the vapor-phase tarnish reaction from ~200 nm to >1 µm. We also observed that the photoluminescence lifetime of AgSePh is stable after storing under ambient condition and the addition of amines boosts this lifetime from <40 ps to 200 ps. The improved syntheses reported in this work will allow easy integrations of AgSePh in both thin-film electronic and nanoelectronic applications as well as the exploration of strong excitonic anisotropy.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info