Proceedings of Online nanoGe Fall Meeting 20 (OnlineNFM20)
Publication date: 4th October 2020
Lead-free perovskites are receiving ever increasing attention after inspiring success of lead-based halide perovskites, mostly due to atmospheric instability and lead toxicity associated with the latter. Despite significant progress in homovalent and heterovalent substitution of Pb with non-toxic elements, stable lead-free perovskites with an ideal bandgap (1.2-1.4 eV) for photovoltaics are still missing. In this work, we report organic-inorganic gold halide double perovskites ((CH3NH3)2Au2X6, X = Br, I) which shows ideal bandgap for photovolltaics. In contrast to other double perovskites, two different oxidation states (+1 and +3 for perovskite structure) of Au is stacked alternatively to form a halogen-bridged perovskite structure. These compounds are solution processable and show bandgap tunability by halide exchange. Density functional theory calculations confirm the direct nature of bandgaps of the compounds with small effective mass for excellent charge transport. In addition, the Au-halide perovskites show high chemical stability, low trap density, and reasonable photoresponse. These combined properties demonstrate that Au-based halide perovskites can be a promising group of compounds for optoelectronic applications.
This research was supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Programme (CRP Award No. NRFCRP14-2014-03) and Intra-CREATE Collaborative Grant (NRF2018-ITC001-001). We would also like to thank Dr. Li Yongxin for helping us solve the crystal structures of the materials presented herein