Finding the Most Promising Route for All-Inorganic Perovskites with PL Measurements: The PCE Potential of the Most Relevant Compositions and Transport Layers
Max Grischek a b, Pietro Caprioglio a b, Hannes Hempel c, José Antonio Márquez Prieto c, Ivona Kafedjiska d, Thomas Unold c, Iver Lauermann d, Martin Stolterfoht b, Dieter Neher b, Steve Albrecht a e
a Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Young Investigator Group Perovskite Tandem Solar Cells, Berlin, Germany
b University of Potsdam, Institute of Physics and Astronomy, Karl-Liebknecht-Str 24-25, Potsdam, 14476, Germany
c Helmholtz-Zentrum Berlin, Department Structure and Dynamics of Energy Materials, Berlin, Germany
d Helmholtz-Zentrum Berlin, Competence Centre Photovoltaics (PVcomB), Berlin, Germany
e Technical University Berlin, Faculty IV – Electrical Engineering and Computer Science, 10587 Berlin, Germany.
Materials for Sustainable Development Conference (MATSUS)
Proceedings of Online nanoGe Fall Meeting 20 (OnlineNFM20)
#PerFun20. Perovskite I: Solar Cells and Related Optoelectronics
Online, Spain, 2020 October 20th - 23rd
Organizers: Mónica Lira-Cantú and Mohammad Nazeeruddin
Contributed talk, Max Grischek, presentation 175
Publication date: 4th October 2020

All-inorganic perovskite compositions are highly interesting for solar cell application due to their outstanding thermal stability and tandem-relevant band gap. Although efficiencies over 19 % have been achieved[1], all-inorganic perovskite solar cells still lag behind their organic-inorganic counterparts. These lower efficiencies are largely due to lower open-circuit voltages compared to organic-inorganic perovskites with the same band gap.

This study investigates the efficiency potential of all-inorganic perovskite layers using intensity-dependent photoluminescence (PL) measurements. This contact-less measurement of a neat absorber film or a layer stack allows for the construction of a pseudo JV curve, providing potential performance metrics such as open-circuit voltage (VOC) and fill factor[2]. Based on realistic assumptions on photocurrent generation, an efficiency potential of the film or stack can be calculated. This is a powerful tool to compare the potential of perovskite compositions and transport layers and to identify the dominating loss mechanisms.

For this presentation, DMAI-CsPbI3 films[1] with a band gap of 1.73 eV are fabricated and analysed. Neat films on quartz glass show a PL-derived efficiency potential of 24.2 %, a remarkable value that for the first time quantifies a potential that can be achieved with ideal transport layers. Films on top of a bilayer of compact and mesoporous TiO2 still show an efficiency potential of 22.9 %.

In addition, CsPbI2Br films with a band gap of 1.9 eV are fabricated and compared to CsPbI3 films. Films on top of the self-assembled monolayer (SAM) molecule 2PACz show a very high PL quantum yield (PLQY) of above 12 %. In a previous study on organic-inorganic perovskites, only potassium-passivated triple cation perovskite films showed a higher PLQY[2]. With the measured quasi-Fermi level splitting (QFLS) of 1.54 eV, 97 % of the radiative VOC limit was reached, which is on par with the best organic-inorganic films we measured[2]. The resulting efficiency potential of 22.8 % is surprisingly close to the efficiency potential of CsPbI3 on TiO2 (22.9 %), which has a much lower band gap. These findings suggest very low defect density both in the CsPbI2Br perovskite bulk and at the interface between perovskite and contact layer.

This study shows very high efficiency potentials that can be achieved with ideal transport layers. By comparing the most relevant compositions and transport layers, this study helps to identify the most promising route for all-inorganic perovskites and the main loss-inducing interfaces.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info