Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures
Quinten Akkerman a, Stefano Toso b, Liberato Manna b
a Laboratory of Inorganic Chemistry, Department of Chemistry & Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, Zürich, Switzerland
b Istituto Italiano di Tecnologia (IIT), Genova, Via Morego, 30, Genova, Italy
Proceedings of Internet Conference for Quantum Dots (iCQD)
Online, Spain, 2020 July 14th - 17th
Organizers: Quinten Akkerman, Raffaella Buonsanti, Zeger Hens and Maksym Kovalenko
Poster, Quinten Akkerman, 069
Publication date: 3rd July 2020

We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalco-halide phase unknown to date that does not belong to the ambient-pressure PbS – PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%) a good size tunability (from 7 to ∼30 nm), an indirect bandgap, photoconductivity (responsivity = 4 ± 1 mA/W) and stability for months under air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-Ray powder diffraction and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalides nanocrystals. 


© Fundació Scito
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info