The fundamental phenomena related to charge carrier dynamics at the nanoscale are tremendously important for a range of scientific disciplines and potential technological applications. Moreover, understanding charge transfer and its connections to structural dynamics with microscopic detail in organic and inorganic nano- and bulk systems is a key to further optimizing functional devices (used in, e.g. photovoltaics, batteries, sensors, molecular electronics, catalysts). The CCDNano meeting will convene experts with different scientific backgrounds to foster interdisciplinary discussions and collaborations. We expect that this will provide a platform to share and advance methodologies and theories from different fields. Ultimately, the aim of the conference is to go beyond the walls separating traditional scientific disciplines such as chemistry, physics, biology and engineering to reveal the nature of charge transfer, recombination and transport processes at the nanoscale.The fundamental phenomena related to charge carrier dynamics at the nanoscale are tremendously important for a range of scientific disciplines and potential technological applications. Moreover, understanding charge transfer and its connections to structural dynamics with microscopic detail in organic and inorganic nano- and bulk systems is a key to further optimizing functional devices (used in, e.g. photovoltaics, batteries, sensors, molecular electronics, catalysts). The CCDNano meeting will convene experts with different scientific backgrounds to foster interdisciplinary discussions and collaborations. We expect that this will provide a platform to share and advance methodologies and theories from different fields. Ultimately, the aim of the conference is to go beyond the walls separating traditional scientific disciplines such as chemistry, physics, biology and engineering to reveal the nature of charge transfer, recombination and transport processes at the nanoscale.
- Colloidal Quantum Dots
- Organic and Hybrid Photovoltaics
- Molecular Electronics
Arjan Houtepen obtained his PhD Cum Laude under supervision of prof. Vanmaekelbergh at Utrecht University and subsequently became tenure track assistant professor in Delft. In 2009/2010 he was a visiting scientist in the group of prof. Feldmann in Munich. At present he is associate professor in the optoelectronic materials section at Delft University.
Born in the Netherlands,David Cahen studied chemistry & physics at the Hebrew Univ. of Jerusalem (HUJ), Materials Research and Phys. Chem. at Northwestern Univ, and biophysics of photosynthesis (postdoc) at HUJ and the Weizmann Institute of Science, WIS. After joining the WIS faculty he focused on alternative sustainable energy resources, in particular various types of solar cells. In parallel he researches hybrid molecular/non-molecular systems, focusing on understanding and controlling electronic transport across (bio)molecules. He is a fellow of the AVS and the MRS. He heads WIS' Alternative, sustainable energy research initiative.
Enrique Cánovas graduated on Applied Physics at Universidad Autónoma de Madrid (2002). After that, he realized a two-years Master of Advanced Studies at Universidad de Valladolid working on the spectroscopic characterization of native and operation-induced defects in high power laser diodes. From 2004 to 2006 he made a second Master of Advanced Studies at Universidad Politécnica de Madrid (Institute of Solar Energy, IES); training focus was on the fabrication, characterization and optimization of solid state solar cells. In 2006 he joined the group of Prof. Martí and Prof. Luque at IES, where he completed PhD studies on the spectroscopic characterization of novel nanostructures aiming ultra-high-efficiency solar cells. His PhD studies included two placements (covering 9 months in total) at Lawrence Berkeley National Laboratory (USA - with Prof. W. Walukiewicz) and Glasgow University (Scotland - with Prof. Colin Stanley). Between 2010 and 2012 he worked as a postdoc at FOM Institute AMOLF (Amsterdam - The Netherlands, Prof. M. Bonn) on the characterization of carrier dynamics in sensitized solar cell architectures. Between 2012 to 2018 he lead the Nanostructured Photovoltaics Group at Max Planck Institute for Polymer Research (Mainz, Germany). Since April 2018, Enrique Canovas works at IMDEA Nanoscience where he was appointed Assistant Research Proffesor (tenure-track). His research interests cover all aspects of photovoltaics, nanotechnology and charge carrier dynamics.
Laura Herz is a Professor of Physics at the University of Oxford. She received her PhD in Physics from the University of Cambridge in 2002 and was a Research Fellow at St John's College Cambridge from 2001 - 2003 after which she moved to Oxford. Her research interests lie in the area of organic and organic/inorganic hybrid semiconductors including aspects such as self-assembly, nano-scale effects, energy-transfer and light-harvesting for solar energy conversion.
He studied electrical engineering in Stuttgart and started working on Si solar cells in 2004 under the guidance of Uwe Rau at the Institute for Physical Electronics (ipe) in Stuttgart. After finishing his undergraduate studies in 2006, he continued working with Uwe Rau first in Stuttgart and later in Juelich on simulations and electroluminescence spectroscopy of solar cells. After finishing his PhD in 2009 and 1.5 years of postdoc work in Juelich, Thomas Kirchartz started a three year fellowship at Imperial College London working on recombination mechanisms in organic solar cells with Jenny Nelson. In 2013, he returned to Germany and accepted a position as head of a new activity on hybrid and organic solar cells in Juelich and simultaneously as Professor for Photovoltaics with Nanostructured Materials in the department of Electrical Engineering and Information Technology at the University Duisburg-Essen. Kirchartz has published >100 isi-listed papers, has co-edited one book on characterization of thin-film solar cells whose second edition was published in 2016 and currently has an h-index of 38.
Stefano Sanvito
Vanessa Wood is a professor in the Department of Information Technology and Electrical Engineering at ETH Zurich, where she heads the Laboratory for Nanoelectronics. Before joining ETH in 2011, she was a postdoctoral associate in the laboratory of Professor Yet-Ming Chiang and Professor Craig Carter in the Department of Materials Science and Engineering at MIT, performing research on novel lithium-ion battery systems. She received her MSc and PhD from the Department of Electrical Engineering and Computer Science at MIT. Her graduate work was done in the group of Professor Vladimir Bulović and focused on the development of optoelectronic devices containing colloidally synthesized quantum dots.