Quantum confined semiconductor nanocrystals (0D quantum dots, 1D quantum rods and 2D quantum Wells) are new classes of materials with many potental applications ranging from light emitting diodes to solar energy conversion. These applications require fundamental understanding of elementary exciton and charge dynamical processes in these materials. These dynamics include Forster and Dexter energy transfer, charge transfer, charge/exciton transport, mulitple exciton generaton, and multi-exciton dissociation, hot electron transfer, single fission and upconversion. This symposium is aimed at bringing together experimentalist and theoreticians who are investigating various fundamental processes in quantum confined nanomaterials. It will provide a forum for discussing the latest scientific discovery in these exciting research áreas.
- Exciton dissociation
- Exciton Transport
- Lasing
- Solar Cells
- Hot carrier extraction
- Artificial photosynthesis
Tianquan (Tim) Lian received his PhD degree from University of Pennsylvania (under the supervision of Prof. Robin Hochstrasser) in 1993. After postdoctoral training with Prof. Charles B. Harris in the University of California at Berkeley, Tim Lian joined the faculty of chemistry department at Emory University in 1996. He was promoted to associate professor in 2002, full professor in 2005, Winship distinguished research Professor in 2007, and William Henry Emerson Professor of Chemistry in 2008. Tim Lian is a recipient of the NSF CAREER award and the Alfred P. Sloan fellowship. Tim Lian research interest is focused on ultrafast dynamics in photovoltaic and photocatalytic nanomaterials and at their interfaces.
1. Personal details Prof. Dr. Mischa Bonn Max Planck Institute for Polymer Research Ackermannweg 10 D-55128 Mainz Male; born, 25/01/71, Nijmegen (NL), married +1. Nationality: Dutch (NL) 2. Education Undergraduate: University of Amsterdam; MSc in Physical Chemistry (highest honors), 10/05/93 Graduate: AMOLF / University of Eindhoven; PhD in Physical Chemistry, 18/12/96 Postdoctoral: Fritz Haber (Max Planck) Institut (Wolf/Ertl group), Berlin, Germany, 1997�1999 Postdoctoral: Columbia University (Heinz group) NY, USA, 1998-2001 (totaling ~6 months). 3. Appointments 4/2011-present Director at the Max Planck Institute for Polymer Research, Mainz, Germany 5/2013-present Honorary Professor (Chemistry Dept.) University of Mainz 6/2005�present Extraordinary Professor (Physics Dept.) University of Amsterdam 1/2004�3/2012 Group Leader at FOM-Institute for Atomic and Molecular Physics 1/2003�1/2004 Scientific Advisor at FOM-Institute for Plasma Physics �Rijnhuizen� 1/2003�9/2009 Associate professor (tenured) at Leiden University (Chemistry Dept.) 8/1999�12/2002 Assistant professor (fixed term) at Leiden University (Chemistry Dept.)
Amirav is an expert in the use of hybrid nanostructures for renewable energy generation, in particular photocatalytic solar-to-fuel conversion. She has demonstrated success in designing sophisticated heterostructures for the water reduction half reaction. She is particularly interested in photocatalysis on the nano scale and related photophysical and photochemical phenomena. The laboratory’s cutting-edge synthetic effort is combined with development of nontraditional techniques for mechanistic study of charge transfer pathways, and fundamental research on reaction mechanism.
Professor Uri Banin is the incumbent of the Larisch Memorial Chair at the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem (HU). Dr. Banin was the founding director of the Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology (2001-2010) and led the program of the Israel National Nanotechnology Initiative at HU (2007-2010). He served on the University’s Executive Committee and on its board of managers and was a member of the board of Yissum. He served on the scientific advisory board of Nanosys. In 2009 Banin was the scientific founder of Qlight Nanotech, a start-up company based on his inventions, developing the use of nanocrystals in display and lighting applications. Since 2013, Banin is an Associate Editor of the journal Nano Letters. His distinctions include the Rothschild and Fulbright postdoctoral fellowships (1994-1995), the Alon fellowship for young faculty (1997-2000), the Yoram Ben-Porat prize (2000), the Israel Chemical Society young scientist award (2001), the Michael Bruno Memorial Award (2007-2010), and the Tenne Family prize for nanoscale science (2012). He received two European Research Council (ERC) advanced investigator grant, project DCENSY (2010-2015), and project CoupledNC (2017-2022). Banin’s research focuses on nanoscience and nanotechnology of nanocrystals and he authored over 180 scientific publications in this field that have been extensively cited.
Majed Chergui is Professor of Physics and Chemistry at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. He received his Bachelor’s degree in Physics and Mathematics from Chelsea College (University of London), then his Master’s degree and in 1981, his Ph.D. in Molecular Physics from the Université Paris-Sud (Orsay). Thereafter, he spent six years at the Free University of Berlin (Germany), before moving to become in 1993 full professor of Physics at the Université de Lausanne, then to the EPFL in 2003.
He is best known for developing new ultrafast spectroscopic techniques and methods, which he applied to some of the most important problems in molecular spectroscopy and dynamics. In particular, he pioneered ultrafast X-ray spectroscopy and demonstrated its power for observing chemical transformations in molecules, solutions and nanoparticles, with femtosecond temporal and sub-Ångstrom spatial resolution. This work opened a new field of research which has influenced many international groups, especially at X-ray Free electron laser centers. Parallel to these achievements, he developed new ultrafast spectroscopic tools in the deep-ultraviolet (deep-UV), and in particular, he pioneered 2-dimensional deep-UV spectroscopy, with which he addressed electron transfer in proteins and charge carrier dynamics in transition metal oxide nanoparticles and solids.
With these various tools, he solved several fundamental questions regarding photoinduced phenomena in coordination chemistry complexes, in protein dynamics and in semiconductors, such as metal oxides. Among some of the highlights of his work are the description of the spin dynamics in metal complexes, the identification of solvation changes around photoexcited solutes, the unravelling of electron transfer processes concurrent with FRET in biological systems.
Chergui is the founding editor-in-chief of “Structural Dynamics” (AIP Publishing). He was awarded the Kuwait Prize for Physics (2009), the Humboldt Research Award (2010), the 2015 Earle K. Plyler Prize for Molecular Spectroscopy & Dynamics of the American Physical Society and the 2015 Edward Stern Award of the International X-ray Absorption Society.
Enrique Cánovas graduated on Applied Physics at Universidad Autónoma de Madrid (2002). After that, he realized a two-years Master of Advanced Studies at Universidad de Valladolid working on the spectroscopic characterization of native and operation-induced defects in high power laser diodes. From 2004 to 2006 he made a second Master of Advanced Studies at Universidad Politécnica de Madrid (Institute of Solar Energy, IES); training focus was on the fabrication, characterization and optimization of solid state solar cells. In 2006 he joined the group of Prof. Martí and Prof. Luque at IES, where he completed PhD studies on the spectroscopic characterization of novel nanostructures aiming ultra-high-efficiency solar cells. His PhD studies included two placements (covering 9 months in total) at Lawrence Berkeley National Laboratory (USA - with Prof. W. Walukiewicz) and Glasgow University (Scotland - with Prof. Colin Stanley). Between 2010 and 2012 he worked as a postdoc at FOM Institute AMOLF (Amsterdam - The Netherlands, Prof. M. Bonn) on the characterization of carrier dynamics in sensitized solar cell architectures. Between 2012 to 2018 he lead the Nanostructured Photovoltaics Group at Max Planck Institute for Polymer Research (Mainz, Germany). Since April 2018, Enrique Canovas works at IMDEA Nanoscience where he was appointed Assistant Research Proffesor (tenure-track). His research interests cover all aspects of photovoltaics, nanotechnology and charge carrier dynamics.
Victor I. Klimov is a Fellow of Los Alamos National Laboratory and the Director of the Center for Advanced Solar Photophysics of the U.S. Department of Energy. He received his M.S. (1978), Ph.D. (1981), and D.Sc. (1993) degrees from Moscow State University. He is a Fellow of both the American Physical Society and the Optical Society of America, and a recipient of the Humboldt Research Award. His research interests include optical spectroscopy of semiconductor and metal nanostructures, carrier relaxation processes, strongly confined multiexcitons, energy and charge transfer, and fundamental aspects of photovoltaics.
Christian Klinke studied physics at the University of Karlsruhe (Germany) where he also obtained his diploma degree in the group of Thomas Schimmel. In March 2000 he joined the group of Klaus Kern at the Institute of Experimental Physics of the EPFL (Lausanne, Switzerland). Then from 2003 on he worked as Post-Doc at the IBM TJ Watson Research Center (Yorktown Heights, USA) in the group of Phaedon Avouris. In 2006 then he became member of the Horst Weller group at the Universitiy of Hamburg (Germany). In 2007 he started as assistant professor at the University of Hamburg. In 2009 he received the German Nanotech Prize (Nanowissenschaftspreis, AGeNT-D/BMBF). His research was supported by an ERC Starting Grant and a Heisenberg fellowship of the German Funding Agency DFG. Since 2017 he is an associate professor at the Swansea University and since 2019 full professor at the University of Rostock.
Sanford Ruhman is a full professor of Chemistry at the Hebrew University. His work concentrates on applications of femtosecond spectroscopy in condensed phases. As a pioneer in the field of femtosecond photochemistry his group was the first to report conservation of coherence from reactants to dissociation products in solutions, and to utilize impulsive Raman probing of photoproducts. His current interests include fundamental ultrafast excitonics in nanocrystals and photovoltaic materials, ultrafast photobiology, and applications of impulsive vibrational spectroscopy to probe light induced dynamics in liquids and solids. Over the years he has served as the Director of the Farkas Minerva center for light induced processes at the Hebrew University, and as the head of the Institute of Chemistry there.
Since 2010, Richard D. Schaller has held a joint appointment as both a research scientist in the Center for Nanoscale Materials at Argonne National Lab and as an assistant professor in the Department of Chemistry at Northwestern University. Schaller’s research focuses on spectroscopy and physical chemistry of semiconductor nanomaterials From 2002 to 2010, Schaller was a Reines Distinguished Postdoctoral Fellow and then a permanent technical staff member at Los Alamos National Lab with Dr. Victor Klimov. Schaller obtained his PhD in physical chemistry from UC Berkeley in 2002 with Prof. Richard Saykally in nonlinear optics and near-field optics. In 2012, he was selected by the National Academy of Sciences as a Kavli Fellow participant.
Vanmaekelbergh's research started in the field of semiconductor electrochemistry in the 1980s; this later evolved into the electrochemical fabrication of macroporous semiconductors as the strongest light scatterers for visible light, and the study of electron transport in disordered (particulate) semiconductors. In the last decade, Vanmaekelbergh's interest shifted to the field of nanoscience: the synthesis of colloidal semiconductor quantum dots and self-assembled quantum-dot solids, the study of their opto-electronic properties with optical spectroscopy and UHV cryogenic Scanning Tunneling Microscopy and Spectroscopy, and electron transport in electrochemically-gated quantum-dot solids. Scanning tunnelling spectroscopy is also used to study the electronic states in graphene quantum dots. More recently, the focus of the research has shifted to 2-D nano structured semiconductors, e.g. honeycomb semiconductors with Dirac-type electronic bands.