Colloidal semiconductor nanocrystals have become a novel class of opto-electronic materials that offer a unique combination of scientific interest and technological appeal. In particular, the combination of size-dependent properties, in part due to quantum confinement, and versatile, solution-based processing, makes nanocrystals ever more attractive for technology development.
Here, nanophotonics is a case in point. Emitting, manipulating and detecting light in, possibly, integrated micro- and nanoscale devices and down to the single photon level holds exceptional promise for data communication, display and lighting, imaging, and sensing and analysis. Achieving this, however, relies on multidisciplinary research at the cross-roads of nanomaterials and nanophotonics, that combines the synthesis and analysis of new nanomaterials, the development of process technologies and the formation and testing of nanophotonic devices for emitting and detecting light down to the single photon level.
This international symposium focuses on the latest developments in nanophotonics by nanocrystals from both a materials and a device perspective, and aims at outlining future directions for the field. Therefore, it will bring together scientists with backgrounds in nanocrystal chemistry, opto-electronics, nanophotonic devices, and single-photon emission and detection around a program with invited and contributed talks and a poster session.
- Chemistry of Semiconductor Nanocrystals – new materials (0D nanocrystals, 2D materials), new synthesis methods, surface chemistry.
- Nanocrystals Process Technology – functional nanocrystal films, patterned deposition, device integration.
- Nanocrystal Opto-Electronics – light-emission and light absorption, stimulated emission and optical gain, single photon emission
- Nanophotonic Devices – nanocrystals in cavities; strong coupling, nanocrystal lasers, nanocrystals photodetectors
Vanmaekelbergh's research started in the field of semiconductor electrochemistry in the 1980s; this later evolved into the electrochemical fabrication of macroporous semiconductors as the strongest light scatterers for visible light, and the study of electron transport in disordered (particulate) semiconductors. In the last decade, Vanmaekelbergh's interest shifted to the field of nanoscience: the synthesis of colloidal semiconductor quantum dots and self-assembled quantum-dot solids, the study of their opto-electronic properties with optical spectroscopy and UHV cryogenic Scanning Tunneling Microscopy and Spectroscopy, and electron transport in electrochemically-gated quantum-dot solids. Scanning tunnelling spectroscopy is also used to study the electronic states in graphene quantum dots. More recently, the focus of the research has shifted to 2-D nano structured semiconductors, e.g. honeycomb semiconductors with Dirac-type electronic bands.
Prof. Z. Hens received his PhD in applied physics from Ghent University in 2000, worked as a postdoctoral fellow at Utrecht University and was appointed professor at the Ghent University department of inorganic and physical chemistry in 2002. His research concerns the synthesis, processing and characterization of colloidal nanocrystals.
David Cheyns
Maksym Kovalenko has been a tenure-track Assistant Professor of Inorganic Chemistry at ETH Zurich since July 2011 and Associate professor from January 2017. His group is also partially hosted by EMPA (Swiss Federal Laboratories for Materials Science and Technology) to support his highly interdisciplinary research program. He completed graduate studies at Johannes Kepler University Linz (Austria, 2004-2007, with Prof. Wolfgang Heiss), followed by postdoctoral training at the University of Chicago (USA, 2008-2011, with Prof. Dmitri Talapin). His present scientific focus is on the development of new synthesis methods for inorganic nanomaterials, their surface chemistry engineering, and assembly into macroscopically large solids. His ultimate, practical goal is to provide novel inorganic materials for optoelectronics, rechargeable Li-ion batteries, post-Li-battery materials, and catalysis. He is the recipient of an ERC Consolidator Grant 2018, ERC Starting Grant 2012, Ruzicka Preis 2013 and Werner Prize 2016. He is also a Highly Cited Researcher 2018 (by Clarivate Analytics).
Wolfgang Langbein (ResearcherID B-1271-2010) was born in Würzburg, Germany, in 1968. He received his Diplom in physics from the University of Kaiserslautern in 1992, and his PhD degree in physics from the University of Karlsruhe in 1995. From 1995 to 1998, he was assistant research professor at the Mikroelektronik Centret, Denmark. From 1998 to 2004, he was with the University of Dortmund, where received his Habilitation in 2003. In 2004 he was appointed senior lecturer in the School of Physics, Cardiff University, promoted to Reader in 2006 and to Personal Chair in 2007. His current research interests are (i) characterization and ultrafast spectroscopy of semiconductor nanostructures, microcavities, and quantum-dot optical amplifiers. (ii) application of optical spectroscopy and imaging to life-science, including the techniques of coherent Raman scattering microscopy and label-free optical biosensors using microcavities or plasmonics.
Emmanuel Lhuillier has been undergraduate student at ESPCI in Paris and then followed a master in condensed matter physics from university Pierre and Marie Curie. He was then PhD student under the mentorship of Emmanuel Rosencher at Onera in the optics department, where he work on transport in quantum well heterostructure. As post doc he moved to the group of Philippe Guyot-Sionnest in the university of Chicago, and start working on infrared nanocrystal. Then he moved back to ESPCI for a second post in the group of Benoit Dubertret working on optoelectronic properties of colloidal nanoplatelets. Since 2015 he is a CNRS researcher at Institute for nanoscience of Paris at Sorbinne université. His research activities are focused on optoelectronic properties of confined Nanomaterial with a special interest on infrared system. He receive in 2017 an ERC starting grant to investigate infrared colloidal materials.
Dr. Thilo Stöferle has been a permanent Research Staff Member at the IBM Research – Zurich Laboratory since August 2007. His current research interests are quantum simulation and quantum fluids, Bose-Einstein condensates with exciton-polaritons, integrated high Q/V cavities, nanophotonic lasers and switches. Another focus is on hybrid nanocomposite quantum materials for strong-light matter interaction and opto-electronic applications.