Solution-processable two-dimensional nanomaterials (nanosheets) are attracting increasing research efforts due to their extraordinary electronic, phononic, optical and mechanical properties, which makes them promising materials for a myriad of applications (spintronic devices, field-effect transistors, nanoscale sensors, batteries, photodetectors, LEDs). 2D materials can be obtained by exfoliation of bulk materials or grown on substrates by MBE or CVD. However, these methods are not suitable to produce large amounts of free-standing 2D nanosheets and lack control over their shape and lateral dimensions. Solution-based "bottom-up" colloidal chemical methods offer an appealing alternative, and are emerging as promising routes for fundamental insight as well as for industrial applications. This conference intends to bring together the multidisciplinary scientific community working on this nascent field, and will address not only the bottom-up solution synthesis of 2D nanomaterials, but also their chemistry, physics and applications in devices.
- Solution-based bottom-up synthesis of 2D nanomaterials (colloidal methods, exfoliation, metal-organic approaches)
- Physical properties of solution-based 2D nanomaterials (spectroscopy, thermoelectrics, mechanical and electronic properties, electron and spin transport)
- Chemical properties of solution-based 2D nanomaterials (chemical stability, chemical self-organization, photocatalytic activity)
- Self-organization of 2D nanomaterials into superstructures
- Devices based on solution-processed 2D nanomaterials (tranistors, solar cells)
- Theory of 2D materials (DOS, optical properties, growth mechanisms)
i
Christian Klinke studied physics at the University of Karlsruhe (Germany) where he also obtained his diploma degree in the group of Thomas Schimmel. In March 2000 he joined the group of Klaus Kern at the Institute of Experimental Physics of the EPFL (Lausanne, Switzerland). Then from 2003 on he worked as Post-Doc at the IBM TJ Watson Research Center (Yorktown Heights, USA) in the group of Phaedon Avouris. In 2006 then he became member of the Horst Weller group at the Universitiy of Hamburg (Germany). In 2007 he started as assistant professor at the University of Hamburg. In 2009 he received the German Nanotech Prize (Nanowissenschaftspreis, AGeNT-D/BMBF). His research was supported by an ERC Starting Grant and a Heisenberg fellowship of the German Funding Agency DFG. Since 2017 he is an associate professor at the Swansea University and since 2019 full professor at the University of Rostock.
Alexander Achtstein
Alexander W. Achtstein studied Physics at University of Augsburg and Ludwigs Maximilians University Munich (LMU). He recieved a PhD from Technical University of Berlin in 2013. After a postdoc period at TU Delft he returned to TU Berlin. His research concentrates on the linear and nonlinear optical as well as electronic properties of 2D semiconductors, with a focus on II-VI nanosheets and transition metal dichalcogenides.
Professor William E. Buhro earned an A.B. in Chemistry in 1980 at Hope College (Holland, Michigan) and a Ph.D. in Chemistry in 1985 at the University of California, Los Angeles. His dissertation research focused on organometallic chemistry. He was then awarded the first Chester Davis Research Fellowship at Indiana University, where he was a postdoctoral fellow from 1985-1987. In 1987 he joined the Department of Chemistry at Washington University as an assistant professor. Buhro twice received the Washington University Council of Arts and Sciences Faculty Award for Teaching (1990, 1996), the Emerson Electric Co. Excellence in Teaching Award (1996), and was named a National Science Foundation Presidential Young Investigator (1991-1996). In 2010 Buhro received the St. Louis Award from the ACS St. Louis Section, and was named a Fellow of the American Chemical Society. He is currently the George E. Pake Professor in Arts & Sciences, Chair of the Department of Chemistry, and an editor of the ACS journal Chemistry of Materials. His research interests in nanoscience include the synthesis of nanocrystalline materials, especially pseudo-1D and 2D colloidal semiconductor nanocrystals, the spectroscopic properties of quantum nanostructures, and mechanisms of nanocrystal growth.
Hilmi Volkan Demir received his B.S. degree from Bilkent University, Ankara, Turkey, in 1998, and his M.S. and Ph.D. degrees from Stanford University, Stanford, CA, USA, in 2000 and 2004, respectively. As Singapore’s NRF Fellow, he is currently a Professor of electrical engineering, physics and materials with Nanyang Technological University (NTU), Singapore, where he is also the Director of LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays. Concurrently, he holds appointment at Bilkent University and UNAM (his alma mater). His current research interests include nanocrystal optoelectronics, semiconductor nanophotonics and lighting. His scientific and entrepreneurship activities resulted in important international and national awards, including the NRF Investigatorship Award, the Nanyang Award for Research Excellence and the European Science Foundation EURYI Award. Dr. Demir is an elected Associate Member of the Turkish National Academy of Sciences (TUBA) and a Fellow of OSA.
Benoit Mahler is a CNRS researcher at the ILM (Light and Matter Institute) in Lyon (France). His research interests include the colloidal synthesis of semiconductor nanostructures and heterostructures, the growth of two-dimensional materials and their applications for light harvesting applications.
Bio Professional Preparation M.S. in Chemistry, with Honours, University of Bari, Italy, 1996 Ph.D. in Chemistry, University of Bari, Italy, 2001 Research interests Prof. L. Manna is an expert of synthesis and assembly of colloidal nanocrystals. His research interests span the advanced synthesis, structural characterization and assembly of inorganic nanostructures for applications in energy-related areas, in photonics, electronics and biology.
David J. Norris received his B.S. and Ph.D. degrees in Chemistry from the University of Chicago (1990) and Massachusetts Institute of Technology (1995), respectively. After an NSF postdoctoral fellowship with W. E. Moerner at the University of California, San Diego, he led a small independent research group at the NEC Research Institute in Princeton (1997). He then became an Associate Professor (2001–2006) and Professor (2006–2010) of Chemical Engineering and Materials Science at the University of Minnesota, where he also served as Director of Graduate Studies in Chemical Engineering (2004–2010). In 2010, he moved to ETH Zurich where he is currently Professor of Materials Engineering. From 2016 to 2019 he served as the Head of the Department of Mechanical and Process Engineering. He has received the Credit Suisse Award for Best Teacher at ETH, twice the Golden Owl Award for Best Teacher in his department, the Max Rössler Research Prize, an ERC Advanced Grant, and the ACS Nano Lectureship Award. He is a Fellow of the American Physical Society and the American Association for the Advancement of Science, and an editorial board member for ACS Photonics and Nano Letters. His research focuses on how materials can be engineered to create new and useful optical properties.
Prof. Anna Rodina is Senior Scientific Researcher in the laboratory of Optics of Semiconductors at Ioffe Institute of Russian Academy of Sciences (St.-Petersburg, Russia). She received her Ph.D. (1993) and Habilitation (2016) degrees in Physics from Ioffe Institute and became the Professor of Russian Academy of Sciences in 2018. The expertise of Prof. Rodina is in the theory of semiconductors and semiconductor nanostructures. The current research interests are focused on the magneto-optical properties and spin-dependent phenomena in colloidal nanocrystals.
Since 2010, Richard D. Schaller has held a joint appointment as both a research scientist in the Center for Nanoscale Materials at Argonne National Lab and as an assistant professor in the Department of Chemistry at Northwestern University. Schaller’s research focuses on spectroscopy and physical chemistry of semiconductor nanomaterials From 2002 to 2010, Schaller was a Reines Distinguished Postdoctoral Fellow and then a permanent technical staff member at Los Alamos National Lab with Dr. Victor Klimov. Schaller obtained his PhD in physical chemistry from UC Berkeley in 2002 with Prof. Richard Saykally in nonlinear optics and near-field optics. In 2012, he was selected by the National Academy of Sciences as a Kavli Fellow participant.
Laurens Siebbeles (1963) is leader of the Opto-Electronic Materials Section and deputy head of the Dept. of Chemical Engineering at the Delft University of Technology in The Netherlands. His research involves studies of the motion of electrons in novel nanostructured materials that have potential applications in e.g. solar cells, light-emitting diodes and nanoelectronics. Materials of interest include organic nanostructured materials, semiconductor quantum dots, nanorods and two-dimensional materials. Studies on charge and exciton dynamics are carried out using ultrafast time-resolved laser techniques and high-energy electron pulses in combination with quantum theoretical modeling.
Vanmaekelbergh's research started in the field of semiconductor electrochemistry in the 1980s; this later evolved into the electrochemical fabrication of macroporous semiconductors as the strongest light scatterers for visible light, and the study of electron transport in disordered (particulate) semiconductors. In the last decade, Vanmaekelbergh's interest shifted to the field of nanoscience: the synthesis of colloidal semiconductor quantum dots and self-assembled quantum-dot solids, the study of their opto-electronic properties with optical spectroscopy and UHV cryogenic Scanning Tunneling Microscopy and Spectroscopy, and electron transport in electrochemically-gated quantum-dot solids. Scanning tunnelling spectroscopy is also used to study the electronic states in graphene quantum dots. More recently, the focus of the research has shifted to 2-D nano structured semiconductors, e.g. honeycomb semiconductors with Dirac-type electronic bands.
Celso de Mello Donega is an Associate Professor in the Chemistry Department of the Faculty of Sciences at Utrecht University in the Netherlands. His expertise is in the field of synthesis and optical spectroscopy of luminescent materials. His research is focused on the chemistry and optoelectronic properties of nanomaterials, with particular emphasis on colloidal nanocrystals and heteronanocrystals.