Two-dimensional (2D) layered semiconductors are at the forefront of scientific and technological interest. The research on layered compounds is thriving since the eighties of the previous century, due to their extraordinary electronic, photonic, optical, and mechanical properties. At that time, 2D semiconductors mainly included naturally grown lamellar crystals and synthetically grown materials. The recent renaissance of the field of 2D compounds was triggered by the discovery of graphene, as well as a myriad of inorganic compounds, like single-layer transition-metal di-chalcogenides and black phosphorous, all prepared via exfoliation or CVD techniques. Above all, solution-based "bottom-up" colloidal chemical methods emerged most recently, offering appealing new pathways for honeycomb super-structures exhibiting linear Dirac-type band dispersions.
The nanoGe2019 conference will bring together academic and industrial scientists from closely related 2D materials communities to exchange knowledge and ideas about preparation methodologies and about unique physical properties, including topological insulators, Dirac-type electronic band structure, spin-valley coupling, quantum spin Hall effect, magnetism, symmetry breaking, layer-layer or layer-substrate interactions, influence of geometry and curvature, effect of electronic many-body interactions, and other related topics. The discussions will cover also unique methodologies for exploring the physical properties and theoretical modeling of the physical phenomena. There is a promising perspective to implement 2D semiconductors in a variety of technologies including spintronic devices, field-effect transistors, nanoscale sensors, batteries, photodetectors, LEDs, which can be leveraged via stimulating meetings of the kind proposed here.
- Synthesis of 2D nanomaterials including exfoliated layers, CVD growth, colloidal growth or others.
- Different types of 2D nanomaterials: Graphenes and related carbon containing materials, transition-metal chalcogenides and iodides, solution-grown nanoplatelets, honeycomb-like structures and others.
- Study of the physical properties of 2D nanomaterials from mechanical, optical, electrical, optoelectronic, magneto-optics, magnetism and others.
- Focusing on a few unique phenomena: topological insulators, Dirac-type band structure, spin-valley coupling, symmetry breaking, curvature, layer-layer interactions and more.
- Theoretical modeling of band structure and quantum many-body effects. Use of 2D nanomaterials in various applications, from electronics, through opto-electronics, photonics, display devices, biological arena and others.
Gerd Bacher actually holds the chair of electronic materials and nanostructures at the Faculty of Engineering at Duisburg-Essen University. His research career started at Stuttgart University in the 1990s working on optical spectroscopy on epitaxially grown quantum wells, which was then extended to nanotechnology and nanodevice fabrication for optoelectronic applications at Würzburg University and Tokyo Institute of Technology. Being full professor since 2003, he is currently working on a wide diversity of nanomaterials, including 2D materials and nanocrystals, for applications in optoelectronics, information science and energy science. He is author or co-author of more than 250 articles in peer-reviewed journals.
Andres Castellanos-Gomez is a Tenured Scientist in the Spanish National Research Council. He explores novel 2D materials and studies their mechanical, electrical and optical properties with special interest on the application of these materials in nanomechanical and optoelectronic devices. He is author of more than 100 articles in international peer review journals and 6 book chapters. He was awarded an ERC Starting Grant in 2017 and has been selected as one of the Top Ten Spanish Talents of 2017 by the MIT Technology Reviews. He has been also recognized with the Young Researcher Award (experimental physics) of the Royal Physical Society of Spain (2016).
Gianluca Fiori
Alexander Khajetoorians
Christian Klinke studied physics at the University of Karlsruhe (Germany) where he also obtained his diploma degree in the group of Thomas Schimmel. In March 2000 he joined the group of Klaus Kern at the Institute of Experimental Physics of the EPFL (Lausanne, Switzerland). Then from 2003 on he worked as Post-Doc at the IBM TJ Watson Research Center (Yorktown Heights, USA) in the group of Phaedon Avouris. In 2006 then he became member of the Horst Weller group at the Universitiy of Hamburg (Germany). In 2007 he started as assistant professor at the University of Hamburg. In 2009 he received the German Nanotech Prize (Nanowissenschaftspreis, AGeNT-D/BMBF). His research was supported by an ERC Starting Grant and a Heisenberg fellowship of the German Funding Agency DFG. Since 2017 he is an associate professor at the Swansea University and since 2019 full professor at the University of Rostock.
Xavier MARIE
Eduardo Marino
Eduardo C Marino graduated as a Bachelor in Physics in 1975. He has got a MSc and a PhD degrees, respectively in 1978 and 1980, both in Quantum Field Theory (QFT). He was a Post-Doctoral Fellow at Harvard University, from 1981 to 1983. By this time he became interested in applicatiions of QFT in Condensed Matter Physics (CMP) and, subsequently, introduced this new area of research in Brazil. He was a visiting Professor at Princeton Universty from 1991 to 1993 and again from 2007 to 2008. He was awarded the State Academic Prize for students graduating in the year of 1975 with the 10 best academic records in all areas of knowledge. In 2000 he became an elected member of the Brazilian National Academy of Sciences. In 2005 he was awarded the National Order of Scientific Merit by the President of Brazil. He has been invited to deliver talks in International Conferences, as well as colloquia and seminars in more than 15 countries. He is Profesor of Physics at the Federal University of Rio de Janeiro, since 1994 and his research interests are still in applications of QFT to CMP, more specifically in graphene, Transition Metal Dichalcogenides, High-Tc Superconductivity, Topological Insulators, Weyl semi-metals, Topological Quantum Computation, Topological effects in CMP, among other subjects.
Paulina Plochocka, Directrice de recherché de 2e classe (DR2) in Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS in Toulouse.
P. Plochocka obtained her PhD cum-laude in 2004 at the University of Warsaw working on the dynamics of many-body interactions between carriers in doped semi-magnetic quantum wells (QW). During her first post doc at Weizmann Institute of science, she started working on the electronic properties of a high mobility 2D electron gas in the fractional and integer quantum Hall Effect regime. She continued this topic during second post doc in LNCMI Grenoble, where she was holding individual Marie Curie scholarship. At the same time, she enlarged her interest of 2D materials towards graphene and other layered materials as TMDCs or black phosphorus. In 2012 she obtained permanent position in LNCMI Toulouse, where she created the Quantum Electronics group, which investigates the electronic and optical properties of emerging materials under extreme conditions of high magnetic field and low temperatures. Examples include semiconducting layer materials such as transition metal dichalcogenides, GaAs/AlAs core shell nanowires and organic inorganic hybrid perovskites.
Prof. Anna Rodina is Senior Scientific Researcher in the laboratory of Optics of Semiconductors at Ioffe Institute of Russian Academy of Sciences (St.-Petersburg, Russia). She received her Ph.D. (1993) and Habilitation (2016) degrees in Physics from Ioffe Institute and became the Professor of Russian Academy of Sciences in 2018. The expertise of Prof. Rodina is in the theory of semiconductors and semiconductor nanostructures. The current research interests are focused on the magneto-optical properties and spin-dependent phenomena in colloidal nanocrystals.
Laurens Siebbeles (1963) is leader of the Opto-Electronic Materials Section and deputy head of the Dept. of Chemical Engineering at the Delft University of Technology in The Netherlands. His research involves studies of the motion of electrons in novel nanostructured materials that have potential applications in e.g. solar cells, light-emitting diodes and nanoelectronics. Materials of interest include organic nanostructured materials, semiconductor quantum dots, nanorods and two-dimensional materials. Studies on charge and exciton dynamics are carried out using ultrafast time-resolved laser techniques and high-energy electron pulses in combination with quantum theoretical modeling.
Vanmaekelbergh's research started in the field of semiconductor electrochemistry in the 1980s; this later evolved into the electrochemical fabrication of macroporous semiconductors as the strongest light scatterers for visible light, and the study of electron transport in disordered (particulate) semiconductors. In the last decade, Vanmaekelbergh's interest shifted to the field of nanoscience: the synthesis of colloidal semiconductor quantum dots and self-assembled quantum-dot solids, the study of their opto-electronic properties with optical spectroscopy and UHV cryogenic Scanning Tunneling Microscopy and Spectroscopy, and electron transport in electrochemically-gated quantum-dot solids. Scanning tunnelling spectroscopy is also used to study the electronic states in graphene quantum dots. More recently, the focus of the research has shifted to 2-D nano structured semiconductors, e.g. honeycomb semiconductors with Dirac-type electronic bands.
Xiaoyang Zhu is the Howard Family Professor of Nanoscience and a Professor of Chemistry at Columbia University. He received a BS degree from Fudan University in 1984 and a PhD from the University of Texas at Austin in 1989. After postdoctoral research with Gerhard Ertl at the Fritz-Haber-Institute, he joined the faculty at Southern Illinois University as an Assistant Professor in 1993. In 1997, he moved to the University of Minnesota as a tenured Associate Professor, later a Full Professor, and a Merck endowed professor. In 2009, he returned to the University of Texas at Austin as the Vauquelin Regents Professor and served as directors of the DOE Energy Frontier Research Center (EFRC) and the Center for Materials Chemistry. In 2013, he moved to Columbia University. His honors include a Dreyfus New Faculty Award from Dreyfus Foundation, a Cottrell Scholar Award from Research Corporation, a Friedrich Wilhelm Bessel Award from the Humboldt Foundation, a Fellow of the American Physical Society, a Vannevar Bush Faculty Fellow Award from DOD, and an Ahmed Zewail Award from the American Chemical Society. Among his professional activities, he serves on the editorial/advisory boards of Accounts of Chemical Research, Science Advances, Chemical Physics, and Progress in Surface Science, and as a scientific advisor to the Fritz-Haber-Institute of the Max-Planck Society and ShanghaiTech University