Single-junction photovoltaic devices only convert a narrow fraction of the solar spectrum
efficiently. Up- and down-conversion have long been proposed as a route towards improved
performance, and excitonic materials are emerging as a realistic path towards this goal.
Significant challenges remain; from the fundamental understanding of excitonic conversion
processes and energy transfer across interfaces, to the development of improved organic
materials for singlet fission and triplet-triplet annihilation, efficient infrared photon emitters, and device architectures.
This symposium will bring together experts from the field of excitonic up- and downconversion
to discuss this interdisciplinary topic with a clear focus on the understanding of
excitonic processes and device integration.
- Fundamentals of singlet fission
- Multi-exciton interactions in nanocrystals and other low-dimensional materials
- Spin-dependent exciton dynamics in nanomaterials
- Theoretical treatments of excitonic conversion and energy transfer
- Multi-photon schemes for solar fuel generation
- Understanding and controlling triplet transport and annihilation for upconversion
- Novel organic and inorganic materials for up-conversion and singlet fission
- Device implementations for photovoltaics, solar fuels, and photon detection.
Luis M. Campos is an Associate Professor in the Department of Chemistry at Columbia University. He was born on this planet, just like you. Luis grew up in Guadalajara, Mexico, and moved at the age of eleven to Los Angeles, California. He received a B.Sc. in Chemistry from CSU Dominguez Hills in 2001, and a Ph.D. from the Department of Chemistry & Biochemistry at UCLA in 2006 working under the supervision of M. A. Garcia-Garibay and K. N. Houk. At UCLA, he was awarded the NSF Predoctoral Fellowship, Paul & Daisy Soros Fellowship, and the Saul & Silvia Winstein Award for his graduate research in solid-state photochemistry. Switching to materials chemistry, he went to UCSB as a UC President's Postdoctoral Fellow to work under the supervision of C. J. Hawker at the Materials Research Laboratory. At Columbia, his group’s research interests lie in physical macromolecular chemistry. To date, he has co-authored over 100 articles and 13 patents; and he has received various awards, including the ACS Arthur C. Cope Scholar Award, ONR Young Investigator Award,NSF CAREER Award, 3M Non-Tenured Faculty Award, I-APS Young Faculty Award, the Journal of Physical Organic ChemistryAward for Early Excellence, and the Polymers Young Investigator Award. In addition to these research accolades, Luis has been recognized for his pedagogical contributions by the Cottrell Scholar Award, Columbia University Presidential Teaching Award, and the Camille Dreyfus Teacher-Scholar Award.
Felix (Phil) Castellano earned a B.A. in Chemistry from Clark University in 1991 and a Ph.D. in Chemistry from Johns Hopkins University in 1996. Following an NIH Postdoctoral Fellowship at the University of Maryland, School of Medicine, he accepted a position as Assistant Professor at Bowling Green State University in 1998. He was promoted to Associate Professor in 2004, to Professor in 2006, and was appointed Director of the Center for Photochemical Sciences in 2011. In 2013, he moved his research program to North Carolina State University where he is currently the Goodnight Innovation Distinguished Chair. He was appointed as a Fellow of the Royal Society of Chemistry (FRSC) in 2015. His current research focuses on metal-organic chromophore photophysics and energy transfer, photochemical upconversion phenomena, solar fuels photocatalysis, energy transduction at semiconductor/molecular interfaces, photoredox catalysis, and excited state electron transfer processes.
Richard Friend holds the Cavendish Professorship of Physics at the University of Cambridge. His research encompasses the physics, materials science and engineering of semiconductor devices made with carbon-based semiconductors, particularly polymers. His research advances have shown that carbon-based semiconductors have significant applications in LEDs, solar cells, lasers, and electronics. His current research interests are directed to novel schemes – including ideas inspired by recent insights into Nature’s light harvesting – that seek to improve the performance and cost of solar cells.
Ferdinand Grozema
Xiaoyang Zhu is the Howard Family Professor of Nanoscience and a Professor of Chemistry at Columbia University. He received a BS degree from Fudan University in 1984 and a PhD from the University of Texas at Austin in 1989. After postdoctoral research with Gerhard Ertl at the Fritz-Haber-Institute, he joined the faculty at Southern Illinois University as an Assistant Professor in 1993. In 1997, he moved to the University of Minnesota as a tenured Associate Professor, later a Full Professor, and a Merck endowed professor. In 2009, he returned to the University of Texas at Austin as the Vauquelin Regents Professor and served as directors of the DOE Energy Frontier Research Center (EFRC) and the Center for Materials Chemistry. In 2013, he moved to Columbia University. His honors include a Dreyfus New Faculty Award from Dreyfus Foundation, a Cottrell Scholar Award from Research Corporation, a Friedrich Wilhelm Bessel Award from the Humboldt Foundation, a Fellow of the American Physical Society, a Vannevar Bush Faculty Fellow Award from DOD, and an Ahmed Zewail Award from the American Chemical Society. Among his professional activities, he serves on the editorial/advisory boards of Accounts of Chemical Research, Science Advances, Chemical Physics, and Progress in Surface Science, and as a scientific advisor to the Fritz-Haber-Institute of the Max-Planck Society and ShanghaiTech University