A solar fuel is a chemical energy carrier that can be produced through photochemical and photobiological approaches from an abundant raw material such as water and carbon dioxide with sunlight. This cross-disciplinary symposium will discuss the latest developments in the solar fuels field and cover areas from bio-inspired design to devices. Materials scientists, chemists, physicists and engineers will discuss progress in semi-artificial photosynthesis, molecular catalysis, designer materials and heterogeneous single-site catalysis, high-throughput experimentation, operando characterisation and the development of demonstrator devices.
- High-throughput Experimentation
- Operando Characterization of Materials and Interfaces
- Towards Solar-to-Fuel Devices
- Semi-artificial Photosynthesis
- Selective Molecular Catalysis
- Designer Materials and Single-site Catalysis
Roel van de Krol is head of the Insitute for Solar Fuels at the Helmholtz-Zentrum Berlin fuer Materialien und Energie (HZB), and professor at the Chemistry Department of TU Berlin. After earning his PhD from TU Delft in 2000 and a postdoctoral stay at M.I.T. (USA), he returned to TU Delft where he was an assistant professor until 2012. At HZB, his research focuses on the development of materials and devices for the photoelectrochemical conversion of sunlight to chemical fuels. Understanding how surface and bulk defects in thin films and nanomaterials affect light absorption, charge transport, recombination and catalytic activity is at the heart of these efforts.
Professor Erwin Reisner received his education and professional training at the University of Vienna (PhD in 2005), the Massachusetts Institute of Technology (postdoc from 2005-2007) and the University of Oxford (postdoc from 2008-2009). He joined the University of Cambridge as a University Lecturer in the Department of Chemistry in 2010, became a Fellow of St. John’s College in 2011, was appointed to Reader in 2015 and to his current position of Professor of Energy and Sustainability in 2017. He started his independent research programme on artificial photosynthesis (solar fuels) with the support of an EPSRC Career Acceleration Fellowship (2009-2015), which also received substantial early support by the Christian Doppler Laboratory for Sustainable SynGas Chemistry (2012-2019). In 2016, he received a European Research Council (ERC) Consolidator Grant to develop the field of semi-artificial photosynthesis (biohybrid systems for solar fuel synthesis) and has recently been awarded an ERC Advanced Grant (now funded by the UKRI underwrite scheme) on semi-biological domino catalysis for solar chemical production. He is the academic lead (PI) of the Cambridge Circular Plastics Centre (CirPlas; since 2019), where his team develops solar-powered valorisation technologies for the conversion of solid waste streams (biomass and plastics) to fuels and chemicals. He has acted as the academic lead of the UK Solar Fuels Network, which coordinates the national activities in artificial photosynthesis (2017-2021) and is currently a co-director of the Centre for Doctoral Training in Integrated Functional Nano (nanoCDT) in Cambridge as well as a member of the European research consortia ‘Sofia’ and ‘solar2chem'.
Raffaella Buonsanti obtained her PhD in Nanochemistry in 2010 at the National Nanotechnology Laboratory, University of Salento. Then, she moved to the US where she spent over five years at the Lawrence Berkeley National Laboratory, first as a postdoc and project scientist at the Molecular Foundry and after as a tenure-track staff scientist in the Joint Center for Artificial Photosynthesis. In October 2015 she started as a tenure-track Assistant Professor in the Institute of Chemical Sciences and Engineering at EPFL. She is passionate about materials chemistry, nanocrystals, understanding nucleation and growth mechanisms, energy, chemical transformations.
Dr. Deutsch has been studying photoelectrochemical (PEC) water splitting since interning in Dr. John A. Turner’s lab at NREL in 1999 and 2000. He performed his graduate studies on III-V semiconductor water-splitting systems under the joint guidance of Dr. Turner and Prof. Carl A. Koval in the Chemistry Department at the University of Colorado Boulder.
Todd officially joined NREL as a postdoctoral scholar in Dr. Turner’s group in August 2006 and became a staff scientist two years later. He works on identifying and characterizing appropriate materials for generating hydrogen fuel from water using sunlight as the only energy input. Recently, his work has focused on inverted metamorphic multijunction III-V semiconductors and corrosion remediation strategies for high-efficiency water-splitting photoelectrodes. Todd has been honored as an Outstanding Mentor by the U.S. Department of Energy, Office of Science nine times in recognition of his work as an advisor to more than 30 students in the Science Undergraduate Laboratory Internship (SULI) program at NREL.
Alfred Ludwig
Professor Adélio Mendes (born 1964) received his PhD degree from the University of Porto in 1993.
Full Professor at the Department of Chemical Engineering of the Faculty of Engineering of the University of Porto. Coordinates a large research team with research interests mainly in dye sensitized solar cells and perovskite solar cells, photoelectrochemical cells including water splitting and solar redox flow batteries, photocatalysis, redox flow batteries, electrochemical membrane reactors (PEMFC, H-SOFC, chemical synthesis), methanol steam reforming, membrane and adsorbent-based gas separations and carbon molecular sieve membranes synthesis and characterization.
Professor Mendes authored or co-authored more than 300 articles in peer-review international journals, filled 23 families of patents and is the author of a textbook; received an Advanced Research Grant from the ERC on dye-sensitized solar cells for building integrated of ca. 2 MEuros and since 2013 he is partner in 4 more EU projects and leads one EU project. Presently he is the leader of a FET Open project, GOTSolar, on perovskite solar cells. He received the Air Products Faculty Excellence 2011 Award (USA) for developments in gas separation and Solvay & Hovione Innovation Challenge 2011 prize, the Prize of Coimbra University of 2016, and the prize of Technology Innovation - 2017 by the University of Porto. Presently, he is the Coordinator of CEner-FEUP, the Competence Center for Energy of the Faculty of Engineering at the University of Porto.
Daniel G. Nocera is the Patterson Rockwood Professor of Energy at Harvard University. He is widely recognized in the world as a leading researcher in renewable energy. His group has pioneered studies of the basic mechanisms of energy conversion in biology and chemistry with a particular focus on multielectron transformations and the coupling of protons to electron transfer (i.e., proton-coupled electron transfer). A recent focus in the group has been to exploit this mechanistic knowledge for the generation of solar fuels.He has accomplished the solar process of photosynthesis – the splitting of water to hydrogen and oxygen using light from neutral water, at atmospheric pressure and room temperature at efficiencies of greater than 10%. This discovery, called artificial leaf, was named by Time magazine as Innovation of the Year for 2011. He has since elaborated this invention to accomplish a complete artificial photosynthetic cycle. To do so, he created the bionic leaf, which is a bio-engineered bacterium that uses the hydrogen from that artificial leaf and carbon dioxide from air to make biomass and liquid fuels. The bionic leaf, which was named by the World Economic Forum as the Breakthrough Technology for 2017, performs an artificial photosynthesis that is ten times more efficient than natural photosynthesis. Extending this approach, Nocera has achieved a renewable and distributed synthesis of ammonia (and fertilizer) at ambient conditions by coupling solar-based water splitting to a nitrogen fixing bioorganism, which is powered by the hydrogen produced from water splitting. These science discoveries set the stage for a storage mechanism for the large scale, distributed, deployment of solar energy and distributed food production and thus are particularly useful to the poor of the world, where large infrastructures for fuel and food production are not tenable.Other areas of interest in the group include the development of proton-coupled electron transfer and its application to radical enzymology, the development of new cancer therapies by creating nanocrystal chemosensors for metabolic tumor profiling, the creation of spin frustrated materials, which has culminated in the discovery of the quantum spin liquid, and the invention of molecular tagging velocimetry technique for the measurement of highly turbulent fluid flows.
Marc Robert was educated at the Ecole Normale Supérieure (Cachan, France) and gained his Ph.D. in 1995 from Paris Diderot University under the guidance of Claude Andrieux and Jean-Michel Savéant. After one year as a postdoctoral fellow at Ohio State University (USA), working alongside Matt Platz, he joined the faculty at Paris Diderot University as Associate Professor. He was promoted to full Professor in 2004, and distinguished Professor in 2019 at Université de Paris. He became a junior Fellow of the University Institute of France (IUF) in 2007 and a senior Fellow in 2017. He was a JSPS (Japan Society for the Promotion of Science) research Fellow (2015). Among various distinctions, Marc Robert received the first International Prize Essential Molecules Challenge from Air Liquide (2016) and the Chemistry and Energy Research Prize from the French Chemical Society (2019). His interests include electrochemical, photochemical, and theoretical approaches of electron transfer reactions and reactivity in chemistry, as well as catalytic activation of small molecules, mainly CO2 and N2.
Kevin Sivula obtained a PhD in chemical engineering from UC Berkeley in 2007. In 2011, after leading a research group in the Laboratory of Photonics and Interfaces at EPFL, he was appointed tenure track assistant professor. He now heads the Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (http://limno.epfl.ch) at EPFL.
David Starr
Jenny started her independent research career as a David Phillips Fellow at the University of Cambridge in 2018. Currently she is tailoring photoelectrochemical platforms to rewire photosystem II both in vitro and in vivo for solar fuel and electricity generation. Her work extends into biophotovoltaic and microbial fuel cell studies.