Since the first synthesis of nearly monodisperse quantum dots (QDs) in 1993 QDs commercially relevant metal chalcogenide QDs have been produced on kilogram scales for luminescent devices from displays to lighting. The precise size control and atomic precision possible has provided a new platform for learning about semiconductor interfaces and the optical properties of defects. Advanced synthesis precursors, more covalent materials, surface functionalization, and doping have become the frontier areas in QD research. In these endeavours many exciting discoveries are being made. The NanoGe FQDots19 meeting will bring together leading scientists in these forefront areas.
- Perovskite Nanocrystals III-V and I-III-VI QDs
- Precursor Chemistry and Nucleation
- Theoretical characterization of surfaces/interfaces and optical properties
- Doping
Jonathan Owen received a B.S. in Chemistry from the University of Wisconsin-Madison, and a Ph.D. in Chemistry from CalTech. As a graduate student in the lab of Professor John Bercaw he studied the kinetics and mechanism of methane C-H activation. In 2005 he joined the lab of Professor Paul Alivisatos as a Petroleum Research Fund Alternative Energy Fellow to study the crystallization and derivatization of colloidal semiconductor nanocrystals. In 2009 he joined the faculty at Columbia University as an Assistant Professor of Chemistry where his group continues to study the synthesis and surface chemistry of colloidal semiconductor nanocrystals. For this work, he has received early career awards from the Department of Energy, the National Science Foundation, 3M, and DuPont.
Education and Professional Positions 2012-Present: Assistant Professor University of Washington Department of Chemistry 2010-2012: NIH NRSA Postdoctoral Fellow Columbia University 2010: PhD Inorganic Chemistry Massachusetts Institute of Technology 2006: BS Chemistry California Institute of Technology Awards 2015: Sloan Research Fellowship 2015: 3M Non-Tenured Faculty Award 2015: Seattle Association for Women in Science Award for Early Career Achievement 2014: University of Washington Innovation Award 2010: Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowship, National Institutes of Health 2010: Alan Davison Ph.D. Thesis Prize, Massachusetts Institute of Technology 2009: Young Investigator Award, Division of Inorganic Chemistry, American Chemical Society
Dr. Galian received her Ph.D in Chemistry at the National University of Cordoba, Argentina in 2001. Then, she was a postdoc researcher at the Polythecnic University of Valencia, University of Valencia and University of Ottawa. During those years, she has studied photosensibilization processes by aromatic ketones using laser flash photolysis techniques and was involved in photonic crystal fiber/semiconductor nanocrystal interaction projects. In 2007, Dr. Galian came back to Spain with a Ramon y Cajal contract to study the surface chemistry of quantum dots and since 2017 she has a permanent position as Scientist Researcher at the University of Valencia. Her main interest is the design, synthesis and characterization of photoactive nanoparticles and multifunctional nanosystems for sensing, electroluminescent applications and photocatalysis.
Daniel R. Gamelin received his B.A. in chemistry from Reed College, spent a year as a visiting scientist at the Max-Planck-Institut für Strahlenchemie, and earned his Ph.D. in chemistry from Stanford University working with Edward I. Solomon in the fields of inorganic and bioinorganic spectroscopies. Following a postdoctoral appointment working with Hans U. Güdel (University of Bern) studying luminescent inorganic materials, he joined the chemistry faculty at the University of Washington, Seattle (2000), where he presently holds the Harry and Catherine Jaynne Boand Endowed Professorship in Chemistry. His research involves the development of new inorganic materials with unusual electronic structures that give rise to desirable photophysical, photochemical, magnetic, or magneto-optical properties. He is presently an Associate Editor for the Royal Society of Chemistry journal Chemical Communications.
Prof. Z. Hens received his PhD in applied physics from Ghent University in 2000, worked as a postdoctoral fellow at Utrecht University and was appointed professor at the Ghent University department of inorganic and physical chemistry in 2002. His research concerns the synthesis, processing and characterization of colloidal nanocrystals.
Arjan Houtepen obtained his PhD Cum Laude under supervision of prof. Vanmaekelbergh at Utrecht University and subsequently became tenure track assistant professor in Delft. In 2009/2010 he was a visiting scientist in the group of prof. Feldmann in Munich. At present he is associate professor in the optoelectronic materials section at Delft University.
Bio Professional Preparation M.S. in Chemistry, with Honours, University of Bari, Italy, 1996 Ph.D. in Chemistry, University of Bari, Italy, 2001 Research interests Prof. L. Manna is an expert of synthesis and assembly of colloidal nanocrystals. His research interests span the advanced synthesis, structural characterization and assembly of inorganic nanostructures for applications in energy-related areas, in photonics, electronics and biology.
Nate Neale received his B.A. degree in chemistry from Middlebury College in 1998, where he studied radical substitution reactions at activated arenes and the binding mode of cisplatin, a common commercial anti-cancer drug, to a model DNA fragment. His scientific training continued as a graduate student under Prof. T. Don Tilley at the University of California, Berkeley, investigating the mechanism by which a transition-metal catalyst facilitates the polymerization of stannanes to polystannanes, a class of inorganic polymers with unique optical and electronic properties. As a postdoctoral researcher at NREL, he worked on controlling the synthesis and surface chemistry of TiO2 nanostructures for dye-sensitized solar cells in the laboratories of Dr. Arthur J. Frank. After a brief stint at the University of Colorado, Boulder, during which time he worked in collaboration with Dr. Frank, Dr. Arthur J. Nozik, and Prof. David Jonas on photoelectrodes for photoelectrochemical water splitting, he returned to NREL as a staff scientist in 2008. His current research interests are focused on tailoring the chemical structure and photophysics of nanostructured inorganic semiconductors and catalysts for photovoltaics, solar fuels, batteries, and related energy conversion and storage concepts.
Alex earned his Ph.D. in physics of semiconductors from Chernivtsi National University, Ukraine for his work on electronic properties of nitride semiconductor alloys.
In 2004 he joined the Quantum Semiconductors and Bionanophotonics lab at University of Sherbrooke as a postdoc, working on theoretical modeling of laser-assisted quantum well intermixing and self-assembly processes of organic monolayers on metal and semiconductor surfaces for applications in bio-sensing.
In 2008 he moved to Quantum Theory Group at National Research Council of Canada in Ottawa, where he worked on many-body problems in epitaxial and colloidal semiconductor and graphene quantum dots; in particular, simulations of multi-exciton generation, Auger processes and optical properties of nanocrystals used in hybrid polymer-semiconductor solar cells.
Alex joined Ted Sargent’s Nanomaterials for Energy Group in 2011 and worked on characterization and modeling of the semiconductor nanocrystal surfaces and developing the synthesis methods for nanomaterials with improved optical and transport properties for photovoltaics.
In 2018, Alex joined the Department of Physical and Environmental Sciences at the University of Toronto, Scarborough as an Assistant Professor in Clean Energy. His topics of interest are materials for energy storage and novel materials discovery using high-throughput experiments and machine learning.